Forecasting USD/IQD Future Values According to Minimum RMSE Rate

Jehan Kadhim Shareef 1
Information System (IS), jihansh@yahoo.com
Thi_Qar University/ Media Faculty

Mohammad Abdulrazzaq Thanoon 2
Artificial Intelligent, alsayed_eng_pc@yahoo.com
University of Mosul / Electronics Engineering Faculty

Wijdan Rashid Abdulhussen 3
Soft Computing, Wijdan_r_a@yahoo.com
Thi_Qar University/ College of Computer and Mathematical

ABSTRACT

This paper has used econometric time series to model and forecast the future price of United States Dollar comparing with Iraqi Dinar (USD/IQD) along 2 years, started from 1st January, 2013 to 31st December, 2014.

After pre-processing the data to check and fill the missing values using interpolation method, the first effort of this project employs the Auto Regressive Moving Average (ARMA) model, which has been used to prototypical a time series data set. It is establish that the model can be used to suitable the data in the estimation period (2013-2014). 400 ARMA models had been tested in this job. The Root Mean Square Error (RMSE) is used to find best order of the parameter in ARMA model i.e. r, m accurate values.

The forecasting is very important in the analysis of economic and industrial time series, and in sailing and buying movement and investment operation. In order to avoid falling into a financial crisis, the idea in this work is trying to find a model to predict approximately future prices of USD/IQD by predicting three days ahead closing prices based on previous one year closing prices for each three days based on the ARMA model. The proposed model gave close results to actual price when it has been compared to closing prices of year 2014.

Keywords: Time series analysis, USD, IQD, ARMA, RMSE, and Forecasting.

1. Introduction to Time Series Data Set and Prediction

A time series is a set or structure of detected data arranged in sequential order and in correspondingly spaced time intervals such as daily or hourly air temperature or prices of currency values and prices of stock markets. Time series data sets are used in many fields such as finance and economy, engineering, and science.
The data set has a \textit{stationary state} if and only if the mean, variance, and autocorrelation of a univariate time series are not changing over the time. There are many analysis methods apply to only stationary data sets, and there are several methods to convert a data set to a stationary such as: transforming it to difference data, or removing the slope from the data set. In order to forecast future information using specific analysis methods, the researchers rely on historical data of time series data sets [1].

Currency crisis is a state in which the rate of a currency becomes unstable, production it difficult for the currency to be used as a dependable medium of exchange. The effect of a currency crisis can be mitigated by sufficient foreign reserves. Also, it is mention as a type of financial crisis. So, we tried to program a model able to predict future financial prices like USD/IQD prices.

There are various statistical analysis methods to process a time series data set. They can be applied to estimate the future level (estimated value), the trend of observations, or the variability of the estimation and observations. As an example, time series regression is used to find out the estimated value of time series data, the trend of the data set, and also the confidence level of the estimated value. More advanced statistical linear estimation methods such as Auto-Regressive Moving-Average (ARMA) were developed since many years ago, and they are still in use for accurate estimations [2].

The ARMA model is a statistical time series analysis technique based on discrete time dynamic modelling of the observations by using the weighted sum of previous \(r \) observations to predict the expected next observation, building an autoregressive model. Moreover, the expectation error is considered to represent the external effects to the dynamics of this autoregressive model, and the weighted average of \(m \) of past error terms is used to drive the model parallel to the observations. The weighted sum of the past observations builds the Auto Regressive model, and, the weighted average of errors is called the Moving Average part of ARMA [3].

and the result has been proven that the ARMA model is work well for forecasting the future values, especially in the longer-term forecasting.

2. Procedures and Material of this Work

2.1 Theoretical Background for ARMA

The Auto-Regressive–Moving-Average (ARMA) model for prediction of the future value of a time series data set was proposed by Peter Whittle in 1951 [9], and more developed by George E. P. Box and Gwilym Jenkins in 1971 [10]. ARMA model comprises two polynomial parts, one contains the past values of the target variable in an auto regressive structure (AR), and the other one contains the moving average of the prediction error as an input variable (MA). The notation AR(r) refers to the autoregressive model of order r. It is written:

\[x_t = c + \sum_{i=1}^{r} \phi_i x_{t-i} + \epsilon_t \]

(2.1)

where \(\phi_i \) are weighting parameters for autoregressive model, \(c \) is a constant, and the random variable \(\epsilon_t \) is white noise.

The notation MA(m) refers to the moving average model of order m. It is set up by taking the average of sub orders. It is written:

\[x_t = \mu + \epsilon_t + \sum_{i=1}^{m} \theta_i \epsilon_{t-i} \]

(2.2)

where the \(\theta_1, \theta_m \) are the parameters of the model, \(\mu \) is the expectation of \(X_t \) (often assumed to equal 0), and the \(\epsilon_t, \epsilon_{t-i} \) are again, white noise error terms.

The notation ARMA(r,m) refers to the model with r autoregressive terms and m moving-average terms:

\[x_t = \mu + \epsilon_t + \sum_{i=1}^{r} \phi_i x_{t-i} + \sum_{i=1}^{m} \theta_i \epsilon_{t-i} \]

(2.3)

The collective model, ARMA(r,m) provides two benefits; the autoregressive part (AR) predicts the next value of the time series by its dynamic model, while the moving average
part (MA) predicts the effect of disturbances which appears as error in the auto regressive model.

2.2 The Data Sets of USD/ IQD Price

In this work, the three-day-ahead prediction of USD/IQD required time series daily closing prices for the period starting from 1st January, 2013 to 31st December, 2014, for total 2 years. The data is collected from the financial data accessible on www.oanda.com/currency/historical-rates/ [11].

Missing vectors and values are an important problem in time series data sets when they are used for forecasting purposes, because the missing part misleads the features of the time series (Missing vector means no data available for a day, and missing value means that some of the values of a daily record are missing) [12]. Mathematically, there are methods to construct missing data vectors within the range of a discrete data set, such as using previous day or next day values to complete the missing days. A commonly used method to fix missing data is method of linear interpolation, i.e. to complete missing values using the weighted average of the previous and next day values.

Linear interpolation finds the target y for a value of x using the previous \((x_a, y_a)\) and the next \((x_b, y_b)\) values as given by equation 3.1 [13].

\[
y = y_a + (y_b - y_a) \frac{(x - x_a)}{(x_b - x_a)}
\]

(2.4)
Figure 2.1 shows daily closing price of USD comparing with IQD values with minimum value = 1123 IQD, maximum value = 1180 IQD, mean= 1150 IQD, and standard division (Std) = 9.081 IQD. The random movement of the prices is clearly visible in the plot, where the prices of 1 USD was 1144 IQD at the start of the year 2013, makes a sharp bottom down to 1123 IQD after five months in the same year, design the financial crisis, and recovers slowly in the forward months back to the 1144 IQD level and more. The plot of the prices in long period clears that the prices are non-stationary.

The return value of the USD/IQD for the period (2013-2014) is shown in Figure 2.2, where the mountaintops of return take place especially when the prices start to increase or decrease. The largest positive return= 0.0276 and negative return= -0.0272 which were happened at 2013. As recognized in the figure 2.2, the return values have zero mean over the long period, verifying its stationary feature.
2.3 Parameter Estimation and Performance Criteria

The target of forecasting in this test is to predict the three-days-ahead return values \(\hat{x}_{k+3} \) correctly. The performance of the ARMA model is measured by the smallness of the error of prediction, comparing the predicted value \(\hat{x}_{k+3} \) by the actual return of three-days-later, i.e.,
\[
e_k = x_{k+3} - \hat{x}_{k+3}.
\]
During the estimation of values for a long period of time, the error may change in positive and negative directions, and their sum \(\sum_i e_{k,i} \) might stay nearly zero although the magnitude of error is much higher than the sum of errors. Therefore \(\sum_i e_{k,i} \) is not a performance measure for the predicted values by an ARMA model. In the most systems and small errors are tolerated to a degree, however, large errors are intolerable because they may result in unexpected hazards. Squaring the error, \(e_{k,i} \), makes it positive, and also increases the effect of larger errors nonlinearly as desired in many cases. The mean of squared errors needs square rooted to make it compatible to the output. The resulting performance measure for \(n \) successive days of predictions using an ARMA model is:
\[
ER_{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} e_{n+i}^2}
\]
It is called root-mean-square-error, and commonly used in estimation as a performance metrics [14]. The parameters of an ARMA(\(r, m \)) model may be trimmed to reduce \(ER_{RMSE} \) of predicted return.

For practical considerations, ARMA model shall have the smallest order, which provides an acceptable low prediction error. The parameters \(r \) and \(m \), which are the orders of AR and
MA, are structural parameters of ARMA model, and in the literature, there are methods based on plotting the partial autocorrelation functions for an estimate of r, and m [15].

2.4 The r and m Values by Autocorrelation and Partial Autocorrelation

The autocorrelation function (ACF) measures the similarities of a series starting from x_t against another series starting from x_{t-h}. It is used for predictions. An auto correlated time series is predictable, probabilistically, because upcoming values rely upon present and previous values. The time series plot could be a tool for measurement the autocorrelation of a time series. Positive autocorrelation may show up a plot as remarkably long runs of many consecutive observations higher than or below the mean. Negative autocorrelation may show up as a nosily low incidence of such runs. For computing autocorrelation the relative a horizontal line planned at the sample mean is helpful in evaluating autocorrelation with the time series plot.

In addition, a partial autocorrelation (PACF) is defined to give the correlation between x_t and x_{t-h} after intermediate correlation has been removed. The PACF is obtained from the set of difference equations related to the ACF. Equation 2.6 shows the formula for the sample lag-h autocorrelation. For an observed series $x_1, x_2, ..., x_T$ and the sample mean \overline{x}, the sample lag-h autocorrelation is given by [15] [16]:

$$
lag-h = \frac{\sum_{t=1}^{T} (x_t - \overline{x})(x_{t-h} - \overline{x})}{\sum_{t=1}^{T} (x_t - \overline{x})^2}
$$

(2.6)

Figure 2.3 and Figure 2.4 show the lag-h autocorrelation (ACF) and lag-h partial autocorrelation (PACF) for USD/IQD Movement at period (2013-2014).

For data set analysis such USD/IQD price, it is difficult to identify the patterns for AR and MA models directly. For AR(r) model, the partial autocorrelation (PACF) will be close to zero at lags greater than r. For a MA (m) model the autocorrelation (ACF) be close to zero at lags greater than m. As a result, the expected m values according to ACF were 10, 11, 13 and 19 (Figure 2.3), and the r values agreeing to PACF were 8, 10, and 15 in USD/IQD price data set (Figure 2.4).
Figure 2.3: Autocorrelation of USD/IQD Movement

Figure 2.4: Partial Autocorrelation of USD/IQD Movement
In figure 2.3 and 2.4, x-axis represents the order of m in ACF and order of r in PACF, y-axis represents the \textit{lag}-h of ACF and PACF for the time series data set.

2.5 Finest r, m Values of ARMA Model

The parameters r and m are called structural parameters to distinguish them from the autoregressive parameters ϕ and moving average parameters θ in the ARMA (r, m). The best forecasting ARMA (r, m) model is obtained by two steps which are the r and m values that give the lowest estimation error ($RMSE$) of three days ahead forecasting over the previous one year data set. The crucial goal of the forecasting is to have sufficiently small error of prediction with less structural order so that satisfactorily accurate prediction is obtained by an ARMA model with the minimum possible order.

For example in the partial auto correlation function (Figure 2.4), the 8^{th}, 10^{th}, and 15^{th} terms (including them as zero-term+Lag) have significant high values. The RMSE values for USD/IQD indicates clearly minimums at $(r, m) = (3, 3)$, $(3, 9)$, $(6, 6)$, $(8, 9)$, $(10, 10)$, $(9, 12)$, and $(15, 15)$.

Principally, the preferred model is the model which has a minimum number of parameters to escape the large number of computational steps as much as possible, eliminate increase the percentage of error and become close to the prediction precision. In this work, the minimum RMSE value = 0.00003 corresponding to ARMA (10, 10) model, rather than RMSE value with ARMA (3, 3) and ARMA (6, 9) were 0.00006 and 0.00009 respectively. So, the data set fitted by ARMA (10, 10) model to get the precision expecting future data set. Figure 2.5 clears the block diagram of whole steps in this research.
3. Results and Discussion

3.1 Forecasting

Guess of the future using the movement and forms in a set of past available observations means forecasting. In the economics sector, forecasting is used by actors to allocate their
resources for a future period of time. The forecasting of economic and industrial time series is important as a tool of analysis for the business decisions such as selling or buying, and hold transactions in the markets [17] [18]. As a methodical technique, predicting helps organizations and companies for decision making in the state of uncertainty.

For the idea of this work, the objective period lies on the years from 2013, to 2014. The observations are collected as the time series of closing prices for the USD/IQD price which is suitable by an ARMA model.

The h-day-ahead prediction error is \(e_{k,h} = x_{k+h} - \hat{x}_{k+h} \), where \(x_{k+h} \) is the actual return value at the end of h-day and \(\hat{x}_{k+h} \) is the forecasted return value by ARMA model.

3.2 The Results of Forecasting Using ARMA Model

In this idea, the forecasting of three-days-ahead return is gains by training the ARMA (10, 10) model for each predicted day by using its previous one year of USD/IQD price. Once the estimation errors \(e_{t,i} \) is calculated from the previous actual values and their estimated by \(e_{t,i} = x_{t,i} - \hat{x}_{t,i} \), the future values \(\hat{e}_{xt} \) is predicted by ARMA (10, 10) model with an error \(e_t \). Figure (3.1) shows the original and forecasting prices along 2014 on one graph.

X-axis represented to the period from 1/1/2013 to 31/12/2014 and y-axis denotes USD/IQD price. The forecasting process happening from 1/1/2014 because each three days are forecasted depending on the previous one year pertinence to these three days.
The error means a difference between original and predicted price. For instance, in (6/1/2014)=3.85, i.e. (1146.4-1142.55), the table 3.1 below contain sample of the actual and prediction price of USD/IQD by ARMA (10, 10) model.

Table 3.1: Actual and predicting USD/IQD closing price

<table>
<thead>
<tr>
<th>Date</th>
<th>Original price</th>
<th>Forecasting Price by ARMA(10,10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/1/2014</td>
<td>1146.4</td>
<td>1142.55</td>
</tr>
<tr>
<td>7/1/2014</td>
<td>1154.88</td>
<td>1157.88</td>
</tr>
<tr>
<td>8/1/2014</td>
<td>1168.11</td>
<td>1169.11</td>
</tr>
<tr>
<td>9/1/2014</td>
<td>1168.11</td>
<td>1171.11</td>
</tr>
<tr>
<td>10/1/2014</td>
<td>1168.11</td>
<td>1166.11</td>
</tr>
<tr>
<td>11/1/2014</td>
<td>1153.88</td>
<td>1154.88</td>
</tr>
<tr>
<td>12/1/2014</td>
<td>1165.5</td>
<td>1164.5</td>
</tr>
<tr>
<td>13/01/2014</td>
<td>1165.5</td>
<td>1163.5</td>
</tr>
<tr>
<td>14/01/2014</td>
<td>1165.74</td>
<td>1164.19</td>
</tr>
<tr>
<td>15/01/2014</td>
<td>1164.66</td>
<td>1162.55</td>
</tr>
<tr>
<td>16/01/2014</td>
<td>1152.98</td>
<td>1150.88</td>
</tr>
<tr>
<td>17/01/2014</td>
<td>1152.98</td>
<td>1152.1</td>
</tr>
<tr>
<td>18/01/2014</td>
<td>1166</td>
<td>1164.7</td>
</tr>
<tr>
<td>19/01/2014</td>
<td>1147.1</td>
<td>1145.9</td>
</tr>
<tr>
<td>20/01/2014</td>
<td>1162.8</td>
<td>1161.6</td>
</tr>
<tr>
<td>21/01/2014</td>
<td>1145.68</td>
<td>1147.18</td>
</tr>
<tr>
<td>22/01/2014</td>
<td>1150.09</td>
<td>1151.59</td>
</tr>
<tr>
<td>23/01/2014</td>
<td>1146.91</td>
<td>1143.81</td>
</tr>
<tr>
<td>24/01/2014</td>
<td>1150.32</td>
<td>1150.68</td>
</tr>
<tr>
<td>25/01/2014</td>
<td>1147.07</td>
<td>1149.47</td>
</tr>
<tr>
<td>26/01/2014</td>
<td>1145.6</td>
<td>1147.1</td>
</tr>
<tr>
<td>27/01/2014</td>
<td>1145.6</td>
<td>1145.25</td>
</tr>
</tbody>
</table>
4. Conclusions

This paper has practical Auto-Regressive Moving Average (ARMA) model on the indexes of USD/IQD time series data set from 2013 to 2014 with the intention to predict the closing price and the possibility for the companies to make a decision of selling or buying operations.

The greatest structural parameter set \((r, m)\) of ARMA\((r,m)\) model is investigated among 400 cases: \{ARMA\((1,1)\), ... ARMA\((20,20)\)\} were obtained by pointed the minimum RMSE case. The ARMA \((10,10)\) model was used to fitting USD/IQD price to get future price because it was record a minimum value of RMSE among 400 tested model \((\text{RMSE} = 0.00003)\).

Also, the \(r\) and \(m\) has been corresponded with the parameters determined by the autocorrelation function (ACF) and the partial autocorrelation function (PACF) graphs. Searching the parameters with minimum RMSE is time consuming; however, it provides indication of prediction error, which cannot be obtained by the ACF and PACF method. The predicted prices provided extra reduction of RMSE. So, we recommend to apply ARMA\((r, m)\) model based on detect a minimum error \((\text{root mean square error (RMSE)}\) or mean absolute error (MAE)) to predict future price and get a right decision making for company or stock markets when they hold a big transaction in case of investment. External issues that have an effect on USD/IQD prices could not be neglected completely.
Bibliography

