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ABSTRACT: The main aim of Objective image quality assessment (IQA) is to evaluate image quality consistently 

with human perception. We have different types of  perceptual IQA metrics but they cannot accurately represents 

the degradations from different types of distortions, e.g., existing structural similarity metrics perform well on 

content dependent distortions and gives the better peak signal-to-noise ratio (PSNR)  but it is  not  well  on 

content-independent distortions. In this paper, we integrate the merits of the existing IQA metrics with the guide 

of the recently revealed internal generative mechanism (IGM). The IGM indicates that the human visual system 

actively predicts sensory information and tries to avoid residual uncertainty for image perception and 

understanding. Motivated by the IGM theory, here we assume an autoregressive prediction algorithm to 

decompose an input scene into two portions, the predicted portion with the predicted visual content and the 

disorderly portion with the residual content. Distortions on the predicted portion causes to degrade the primary 

visual information, and structural similarity procedures are employed to measure its degradation; distortions on 

the disorderly portion mainly change the uncertain information and the PNSR is employed for it. Based on the 

noise energy deployment on the two portions, finally we mix the two evaluation results to acquire the overall 

quality score. Simulation results show better performance comparable with the state-of-the-art quality metrics. 
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I. INTRODUCTION 

The human visual system (HVS) is the ultimate receiver of sensory information, perceptual 

image quality assessment (IQA) is useful for many image and video systems, e.g., for 

information acquisition, compression, transmission and restoration, to make them HVS oriented. 

Therefore, an objective visual quality metric consistent with the subjective perception is in 

demand.  In order to develop an accurate IQA metric in accord with the subjective perception, 

researchers turn to investigate the HVS characteristics to seek for image features which affect 

quality assessment, such as brightness, contrast, frequency content, structure and statistical 

information [4]. Many HVS oriented IQA metrics are  proposed such as noise quality measure 

(NQM) [5], structural similarity (SSIM) [6], visual information fidelity (VIF) [7], the PSNR-

HVS-M [8], visual signal-to-noise ratio (VSNR) [9], and the recently proposed most apparent 

distortion (MAD) [10] and feature similarity (FSIM) [11]. The SSIM index is the most popular 

one among all of these IQA metrics. This index is based on the assumption that the HVS is 

highly adapted for extracting structural information from the input scene [6]. In [12], [13], SSIM 

is improved by using edge/gradient feature of the image so the edge conveys important visual 

information for understanding. And another high-level HVS property based and well accepted 

metric, the VIF index computes the mutual information between the reference and test images 

for visual information fidelity evaluation [7]. These HVS oriented IQA metrics promote our 

understanding on sensory signal processing and perceptual quality assessment. Different types of 

distortion cause different degradation. However, these existing HVS oriented IQA metrics gives 

better by considering the content-independent.  But this proposed HVS oriented IQA metrics 

perform well on content-dependent distortions (e.g., blur and compression noise) but not well 

enough on content-independent distortions (e.g., white noise and impulse noise) [3]. While 

PSNR/MSE performs the opposite way. Recently, Larson and Chandler [10] advocated that the 

HVS uses multiple strategies to determine image quality. And near-threshold and clearly visible 

(suprathreshold) distortions are measured separately in their model. This model mainly considers 

the distinctions of different energy levels rather than the different effects of distortions. In [14], 

Li et al. introduced an ad hoc procedure to decouple the original distortion into detail loss and 

additive impairment for discriminative measurement. However, the decomposition for distortions 

is not well grounded and the performance improvement is limited. Recent researches on brain 

theory and neuroscience, such as the Bayesian brain theory [15] and the free-energy principle 
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[16], indicate that the brain works with an internal generative mechanism (IGM) for visual 

information perception and understanding. Within the IGM, the brain performs as an inference 

system that actively predicts the visual sensation and avoids the residual uncertainty/disorder 

[15]–[17]. Thus, we adopt a Bayesian prediction model [15], [18] in our method, and the input 

scene is decomposed into predicted and disorderly portions. We suppose that distortions on the 

predicted content will damage the primary visual information, such as blur the edge and destroy 

the structure, which impact on image understanding. Therefore, edge and structure similarity [6], 

[12] are used for evaluation on this portion. On the other hand, distortions on the disorderly 

portion (predicted residual, which arouses uncomfortable sensation) is somewhat content 

independent. So we take the assumption of PSNR to estimate the degradation on disorderly 

uncertainty since PSNR is good for content-independent noise measurement [1], [3]. Finally, we 

combine the results on the two portions with an adaptive nonlinear procedure to acquire the 

overall score. Simulation results on six publicly available image databases confirm that the 

proposed model is comparable with the state-of-the-art IQA metrics. 

 

II. PROPOSED IQA SCHEME 

 This section introduces the computational model of the proposed IQA metric in detail. We 

firstly decompose the reference (and test) image(s) into predicted and disorderly portions with a 

Bayesian prediction model. Then degradations on the two portions are evaluated respectively. 

Finally, we combine the results of the two portions based on error energies distribution to deduce 

the overall perceptual quality score. The flowchart of the proposed model is shown in Fig. 1.  

A. AR Based Image Prediction 

In image processing the decomposition is nothing but which splits an image into two or more 

portions for discriminately processing, e.g., to decompose an input scene into textural and 

cartoon parts for just noticeable difference estimation [28]. In this paper, inspired by the IGM 

theory about the visual perceptual process, we try to decompose an image into predicted and 

disorderly portions for quality evaluation. Since the Bayesian brain theory indicates that the brain 

performs as an active inference procedure [16], [31],  
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Fig. 1 Flowchart of the proposed model          is the reference (test) image,    
    

    and   

  
    

      are the predicted and disorderly portions of            respectively. 

 

We adopt a Bayesian prediction based autoregressive (AR) model [18], [32] for image content 

inference. The Bayesian brain theory uses Bayesian probability to imitate the inference 

procedure for image perception and understanding in the IGM [15], [16]. The key of this theory 

is a probabilistic model that optimizes the input scene by minimizing the prediction error. For 

example, with an input scene, the Bayesian brain system tries to maximize the conditional 
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probability        between the central pixel x and its surrounding                     [15] for 

error minimization. By decomposing the conditional probability  (
 

 
) and analyzing the 

correlation between the central pixel x and the pixels xi in the surrounding X, it can be seen that 

these xi which strongly correlated to x play dominant roles for        maximization [33]. 

Therefore, the mutual information              between the central pixel x and its surrounding 

pixel xi is adopted as the autoregressive coefficient, and an AR model is created to predict the 

value of the pixel x [32], 

 

   ∑           
                     (1) 

 

Where    is the predicted value of pixel        
       

∑         
  being the normalized coefficient, and   

is white noise. In this paper, we set   as a 21 × 21 surrounding region. With the predicted model 

(1), an input image (I ) is decomposed Into two portions, the predicted image      and the 

disorderly image (  ), as shown in Fig. 2. In the next subsections, we will evaluate the 

degradations on the two decomposed images, respectively, since distortions on the two portions 

have different impacts toward the perceptual quality. 

 

B. Uncomfortable Sensation Variation 

The disorderly portion is composed of the uncertain stimuli of the original image [16]. Distortion 

on this portion has little effect on image understanding and mainly generates uncomfortable 

sensation. As a natural way to define the energy of the error signal [1], the PSNR metric presents 

a good match with the HVS when the error signal is independent of the original signal [3], and 

this point is also confirmed by the experiments in [2]. Since the distortion of the disorderly 

portion is independent of the original image content, the PSNR is adopted to evaluate the quality 

of this portion. Therefore the uncomfortable sensation variation is computed as follow 
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where   
  and   

   are the disorderly portions of the reference and test images, respectively; 

       
    

      is the PSNR value between   
  and   

  , and       
    

   is the mean squared error 

between   
   and   

    (the minimal value of MSE (such as 1) is set to avoid infinite psnr);   is a 

constant parameter which is used to normalize the PSNR value into the range [0 1], for this 

purpose, we set           
    

 

 

C. Visual Information Degradation 

Since the predicted portion possesses the primary visual information and distortion on this 

portion impacts on image understanding, we should adopt some high-level HVS properties to 

evaluate the degradation of the visual information. In this paper, degradations on edge and 

structure are computed for primary visual information fidelity evaluation. The HVS is highly 

sensitive to the edge, which conveys important visual information and is crucial for scene 

understanding [12], [34]. The degradation on the edge between the predicted portions of the 

reference image    
   and the test image (  

 ) is computed as their edge height similarity, 

 

 (     )     
   

 (  )   
 (  )   

  
 (  )

 
   

 (  )
 
   

                   (3) 

 

Where    and   are the corresponding pixels from the predicted portions of the reference and 

test images (   
        

  ), respectively;          is the edge similarity between    and   ,   
  and 

  
  are the edge height maps of    

  and    
  , respectively,    is the small constant to avoid the 

denominator being zero and is set as               [6], and L is the gray level of the image. 

The edge height   
  (same for   

 ) is computed as the maximal edge response along the four 

directions [27], 
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(a)                             (b)                                  (c) 

 

Fig. 2. Image decomposition with the Bayesian prediction-based AR model. (a) Original image. 

(b) Predicted portion. (c) Disorderly portion (pixel values have been scaled to [0, 255] for a clearer view). 

 

 

              

              (a)                                                     (b)                                             (c)                                              (d)    

                                                                              

                                                                                                                                      

Fig. 3. Edge filters for four directions. (a) Horizontal. (b) 45 degrees. (c) 135 degrees. (d) Vertical 

 

where    are four directional filters, as shown in Fig. 3, ϕ = 1/16, and symbol   denotes the 

convolution operation. However, some image regions (e.g., the feather of the parrots in Fig. 2) 

has no apparent edge but still represents specific structural character. In addition, the HVS is 

highly adapted for extracting structural information from a scene for recognition. Therefore, 

besides edge similarity, we need another primary visual information degradation measurement 

to evaluate the fidelity on image structure. Here, we adopt the structural similarity [6] to evaluate 

the degradation on structural information 
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where           is the structural similarity between patches ( (  )      (  )) centered at    and 
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( (  )      (  )) ; we set the patch size as 11 × 11, and the constant    
  

 
 (the same as in [6]). 

Combining the edge and structure similarities, we deduce the degradation on primary visual 

information as 

 

 (     )   (     )              (7) 

    

D. Overall Perceptual Quality 

Distortions on the two portions codetermine the quality of the contaminated image. The 

distortion on the disorderly portion degrades image quality by disturbing our attention and 

arousing uncomfortable sensation. On the other hand, the distortion on the predicted portion 

changes the original visual content and affects image understanding. Therefore, we combine the 

evaluation of the two portions, (2) and (7), to acquire the perceptual quality score 

 

                            (8) 

 

where V is the pooling value of the predicted portion (mean value of all         ); the 

parameters   and   are used to adjust the relative importance of the two portions. The weights of 

the two evaluation parts, P and V, are closely related to the noise energy level on the two 

decomposed portions. The more noise energy that one decomposed portion possesses, the more 

important role it will play. For example, if most of the noise is in the disorderly portion, the noise 

mainly arouses uncomfortable sensation and the uncomfortable sensation variation is dominant 

in the quality assessment. Thus a big value of   is required in (8) to highlight the evaluation 

result of the disorderly portion (P). On the contrary, when the noise is mainly in the predicted 

portion, the quality degradation is primarily caused by the change of the primary visual 

information. A big value of   is needed to highlight the evaluation result of the predicted portion 

(V). According to the analysis above, we compute the importance parameter based on the noise 

energies of the two portions, and we set 
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where      is the energy of noise between the disorderly portions of the reference image (  
 ) 

and the test image    
  ;      is the energy of noise between the two predicted 

images      
        

   , and     [0 1]. Meanwhile, as same as  (9),  

we set                        . Moreover, considering the viewing conditions [35] (i.e., 

the viewing distance and the display resolution), multiscale evaluation is adopted to deduce the 

overall quality score, 

 

   ∏   
   

                                               (10) 

where    is the perceptual quality score on the      level based on (8), the parameter ρ defines the 

relative importance of different scales, and its value is set as ρ = [0.0448, 0.2856, 0.3001, 0.2363, 

0.1333] [35], which is obtained through psychophysical experiment. 

 

III. SIMULATION RESULTS 

 

Fig : Reference image 

 

Fig : Disorder image 
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Fig : Reference Disorder image 

 

 

Fig : Reference prediction image 

 

 

Fig : Disorder of Disorder image 
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Fig : Disorder of Prediction image 

 

IV. CONCLUSION 

This paper introduces a novel IQA metric by integrating the best existing IQA metrics. SSIM and 

GSIM perform well on content-dependent distortions but not well enough on content-

independent distortions. However PSNR/MSE performs the opposite way. So we integrate the 

merits of these metrics by decomposing the input scene into predicted and disorderly portions, 

and distortions on these two portions are discriminatively treated. The decomposition is inspired 

by the recent IGM theory which indicates that the HVS works with an internal inference system 

for sensory information perception and understanding, i.e., the IGM actively predicts the sensory 

information and tries to avoid the residual uncertainty/disorder. Since the predicted portion holds 

the primary visual information and the disorderly portion consists of uncertainty, the distortions 

on the two portions cause different aspects of quality degradations. Distortions on the predicted 

portion will affect the understanding of the visual content, and that on disorderly portion mainly 

arouse uncomfortable sensation. Considering the different properties of the two decomposed 

portions, we separately evaluate their quality degradations. Firstly, a Bayesian prediction model 

is adopted to decompose the reference and test images into predicted and disorderly portions, 

respectively. Then we evaluate the content degradation on their predicted portions with the 

measurement based on edge and structure similarities, and uncomfortable sensation variation 

between the disorderly portions of the reference and test images with the PSNR measurement. 

Finally, according to the noise energy level, we combine the results of the two portions to 

acquire the overall quality score. Experiments on individual distortion types demonstrate the 

effectiveness of the proposed metric. Moreover, Simulation results show better performance 

comparable with the state-of-the-art quality metrics. 

disorder image prediction
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