
P. Shalini et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.12, December- 2016, pg. 26-37

© 2016, IJCSMC All Rights Reserved 26

Available Online at www.ijcsmc.com

International Journal of Computer Science and Mobile Computing

 A Monthly Journal of Computer Science and Information Technology

ISSN 2320ï088X
IMPACT FACTOR: 6.017

 IJCSMC, Vol. 5, Issue. 12, December 2016, pg.26 ï 37

High Performance Carry Skip Adder

Implementing Using Verilog-HDL

P. Shalini
1
, Laxman G

2

1PG/ VLSI, 2Associate Professor, Department of ECE

Sree Chaitanya College of Engineering, Karimnagar, Telangana

Abstract: In this paper, we present a carry skip adder (CSKA) structure that has a higher speed yet lower energy consumption

compared with the conventional one. The speed enhancement is achieved by applying concatenation and incrementation

schemes to improve the efficiency of the conventional CSKA (Conv-CSKA) structure. In addition, instead of utilizing

multiplexer logic, the proposed structure makes use of AND-OR-Invert (AOI) and OR-AND-Invert (OAI) compound gates for

the skip logic. The structure may be realized with both fixed stage size and variable stage size styles, wherein the latter further

improves the speed and energy parameters of the adder. Finally, a hybrid variable latency extension of the proposed structure,

which lowers the power consumption without considerably impacting the speed, is presented. This extension utilizes a

modified parallel structure for increasing the slack time, and hence, enabling further voltage reduction. The proposed

structures are assessed by comparing their speed, power, and energy parameters with those of other adders using a 45-nm

static CMOS technology for a wide range of supply voltages. The results that are obtained using HSPICE simulations reveal,

on average, 44% and 38% improvements in the delay and energy, respectively, compared with those of the Conv-CSKA. In

addition, the powerïdelay product was the lowest among the structures considered in this paper, while its energyïdelay

product was almost the same as that of the KoggeïStone parallel prefix adder with considerably smaller area and power

consumption. Simulations on the proposed hybrid variable latency CSKA reveal reduction in the power consumption

compared with the latest works in this field while having a reasonably high speed.

Index Termsð Carry skip adder (CSKA), energy efficient, high performance, hybrid variable latency adders, voltage scaling.

I. INTRODUCTION

Adders are a key building block in arithmetic and logic units (ALUs) [1] and hence increasing their speed and reducing their

power/energy consumption strongly affect the speed and power consumption of processors. There are many works on the subject

of optimizing the speed and power of these units, which have been reported in [2]ï[9]. Obviously, it is highly desirable to

achieve higher speeds at low-power/energy consumptions, which is a challenge for the designers of general purpose processors.
One of the effective techniques to lower the power consumption of digital circuits is to reduce the supply voltage due to quadratic

dependence of the switching energy on the voltage. Moreover, the sub-threshold current, which is the main leakage component in

OFF devices, has an exponential dependence on the supply voltage level through the drain-induced barrier lowering effect [10].

Depending on the amount of the supply voltage reduction, the operation of ON devices may reside in the superthreshold, near-

threshold, or subthreshold regions. Working in the superthreshold region provides us with lower delay and higher switching and

leakage powers compared with the near/subthreshold regions. In the subthreshold region, the logic gate delay and leakage power

exhibit exponential dependences on the supply and threshold voltages. Moreover, these voltages are (potentially) subject to

process and environmental variations in the nanoscale technologies. The variations increase uncertainties in the aforesaid

performance parameters. In addition, the small subthreshold current causes a large delay for the circuits operating in the

subthreshold region [10]. Recently, the near-threshold region has been considered as a region that provides a more desirable

tradeoff point between delay and power dissipation compared with that of the subthreshold one, because it results in lower delay
com-pared with the subthreshold region and significantly lowers switching and leakage powers compared with the superthresh-

old region. In addition, near-threshold operation, which uses supply voltage levels near the threshold voltage of transistors [11],

suffers considerably less from the process and environmental variations compared with the subthreshold region.

P. Shalini et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.12, December- 2016, pg. 26-37

© 2016, IJCSMC All Rights Reserved 27

The dependence of the power (and performance) on the supply voltage has been the motivation for design of circuits with the

feature of dynamic voltage and frequency scaling. In these circuits, to reduce the energy consumption, the system may change the

voltage (and frequency) of the circuit based on the workload requirement [12]. For these systems, the circuit should be able to

operate under a wide range of supply voltage levels. Of course, achieving higher speeds at lower supply voltages for the

computational blocks, with the adder as one the main components, could be crucial in the design of high-speed, yet energy

efficient, processors. In addition to the knob of the supply voltage, one may choose between different adder structures/ families

for optimizing power and speed. There are many adder families with different delays, power consumptions, and area usages.

Examples include ripple carry adder (RCA), carry increment adder (CIA), carry skip adder (CSKA), carry select adder (CSLA),

and parallel prefix adders (PPAs). The descriptions of each of these adder architectures along with their characteristics may be

found in [1] and [13]. The RCA has the simplest structure with the smallest area and power consumption but with the worst

critical path delay. In the CSLA, the speed, power consumption, and area usages are considerably larger than those of the RCA.
The PPAs, which are also called carry look-ahead adders, exploit direct parallel prefix structures to generate the carry as fast as

possible [14]. There are different types of the parallel prefix algorithms that lead to different PPA structures with different

performances. As an example, the KoggeïStone adder (KSA) [15] is one of the fastest structures but results in large power

consumption and area usage. It should be noted that the structure complexities of PPAs are more than those of other adder

schemes [13], [16].

The CSKA, which is an efficient adder in terms of power consumption and area usage, was introduced in [17]. The critical

path delay of the CSKA is much smaller than the one in the RCA, whereas its area and power consumption are similar to those of

the RCA. In addition, the power-delay product (PDP) of the CSKA is smaller than those of the CSLA and PPA structures [19]. In

addition, due to the small number of transistors, the CSKA benefits from relatively short wiring lengths as well as a regular and

simple layout [18]. The comparatively lower speed of this adder structure, however, limits its use for high-speed applications.

In this paper, given the attractive features of the CSKA structure, we have focused on reducing its delay by mod-ifying i ts

implementation based on the static CMOS logic. The concentration on the static CMOS originates from the desire to have a

reliably operating circuit under a wide range of supply voltages in highly scaled technologies [10]. The proposed modification

increases the speed considerably while maintaining the low area and power consumption features of the CSKA. In addition, an

adjustment of the structure, based on the variable latency technique, which in turn lowers the power consumption without

considerably impacting the CSKA speed, is also presented. To the best of our knowledge, no work concentrating on design of

CSKAs operating from the superthreshold region down to near-threshold region and also, the design of (hybrid) variable latency

CSKA structures have been reported in the literature. Hence, the contributions of this paper can be summarized as follows.

1) Proposing a modified CSKA structure by combining the concatenation and the incrementation schemes to the conventional

CSKA (Conv-CSKA) structure for enhanc-ing the speed and energy efficiency of the adder. The modification provides us

with the ability to use simpler carry skip logics based on the AOI/OAI compound gates instead of the multiplexer.

2) Providing a design strategy for constructing an efficient CSKA structure based on analytically expres-sions presented for
the critical path delay.

3) Investigating the impact of voltage scaling on the efficiency of the proposed CSKA structure (from the nominal supply

voltage to the near-threshold voltage).

4) Proposing a hybrid variable latency CSKA structure based on the extension of the suggested CSKA, by replacing some of

the middle stages in its structure with a PPA, which is modified in this paper.
The rest of this paper is organized as follows. Section II discusses related work on modifying the CSKA structure for improving the

speed as well as prior work that use variable latency structures for increasing the efficiency of adders at low supply voltages. In Section
III, the Conv-CSKA with fixed stage size (FSS) and variable stage size (VSS) is explained, while Section IV describes the proposed

static CSKA structure. The hybrid variable latency CSKA structure is suggested in Section V. The results of comparing the
characteristics of the proposed structures with those of other adders are discussed in Section VI. Finally, the conclusion is drawn in

Section VII.

II. PRIOR WORK

Since the focus of this paper is on the CSKA structure, first the related work to this adder are reviewed and then the variable

latency adder structures are discussed.

A. Modifying CSKAs for Improving Speed

The conventional structure of the CSKA consists of stages containing chain of full adders (FAs) (RCA block) and 2:1

multiplexer (carry skip logic). The RCA blocks are connected to each other through 2:1 multiplexers, which can be placed into

one or more level structures [19]. The CSKA configuration (i.e., the number of the FAs per stage) has a great impact on the speed

of this type of adder [23]. Many methods have been suggested for finding the optimum number of the FAs [18]ï[26]. The

techniques presented in [19]ï[24] make use of VSSs to minimize the delay of adders based on a single-level carry skip logic. In

[25], some methods to increase the speed of the multilevel CSKAs are proposed. The techniques, however, cause area and power

increase considerably and less regular layout. The design of a static CMOS CSKA where the stages of the CSKA have a variable
sizes was suggested in [18]. In addition, to lower the propagation delay of the adder, in each stage, the carry look-ahead logics

were utilized. Again, it had a complex layout as well as large power consumption and area usage. In addition, the design

approach, which was presented only for the 32-bit adder, was not general to be applied for structures with different bits lengths.

Alioto and Palumbo [19] propose a simple strategy for the design of a single-level CSKA. The method is based on the VSS

technique where the near-optimal numbers of the FAs are determined based on the skip time (delay of the multiplexer), and the

ripple time (the time required by a carry to ripple through a FA). The goal of this method is to decrease the critical path delay by

P. Shalini et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.12, December- 2016, pg. 26-37

© 2016, IJCSMC All Rights Reserved 28

considering a non-integer ratio of the skip time to the ripple time on contrary to most of the previous works, which considered an

integer ratio [17], [20]. In all of the works reviewed so far, the focus was on the speed, while the power consumption and area

usage of the CSKAs were not considered. Even for the speed, the delay of skip logics, which are based on multiplexers and form

a large part of the adder critical path delay [19], has not been reduced.

Fig. 1. Conventional structure of the CSKA [19]

B. Improving Efficiency of Adders at Low Supply Voltages

To improve the performance of the adder structures at low supply voltage levels, some methods have been proposed in [27]ï

[36]. In [27]ï[29], an adaptive clock stretching operation has been suggested. The method is based on the observation that the

critical paths in adder units are rarely activated. Therefore, the slack time between the critical paths and the off-critical paths may

be used to reduce the supply voltage. Notice that the voltage reduction must not increase the delays of the noncritical timing

paths to become larger than the period of the clock allowing us to keep the original clock frequency at a reduced supply voltage

level. When the critical timing paths in the adder are activated, the structure uses two clock cycles to complete the operation. This

way the power consumption reduces considerably at the cost of rather small throughput degradation. In [27], the efficiency of this

method for reducing the power consumption of the RCA structure has been demonstrated.
The CSLA structure in [28] was enhanced to use adaptive clock stretching operation where the enhanced structure was called

cascade CSLA (C
2
SLA). Compared with the common CSLA structure, C

2
SLA uses more and different sizes of RCA blocks.

Since the slack time between the critical timing paths and the longest off-critical path was small, the supply voltage scaling, and
hence, the power reduction were limited.

Finally, using the hybrid structure to improve the effec-tiveness of the adaptive clock stretching operation has been

investigated in [31] and [33]. In the proposed hybrid structure, the KSA has been used in the middle part of the C
2
SLA where

this combination leads to the positive slack time increase. However, the C
2
SLA and its hybrid version are not good candidates

for low-power ALUs. This statement originates from the fact that due to the logic duplication in this type of adders, the power
consumption and also the PDP are still high even at low supply voltages [33].

III. CONVENTIONAL CARRY SKIP ADDER

The structure of an N-bit Conv-CSKA, which is based on blocks of the RCA (RCA blocks), is shown in Fig. 1.

In addition to the chain of FAs in each stage, there is a carry skip logic. For an RCA that contains N cascaded FAs, the worst

propagation delay of the summation of two N -bit numbers, A and B, belongs to the case where all the FAs are in the propagation

mode. It means that the worst case delay belongs to the case where

Pi = Ai ṥ Bi = 1 for i = 1, . . . , N

Where Pi is the propagation signal related to Ai and Bi . This shows that the delay of the RCA is linearly related to N [1]. In the

case, where a group of cascaded FAs are in the propagate mode, the carry output of the chain is equal to the carry input. In the
CSKA, the carry skip logic detects this situation, and makes the carry ready for the next stage without waiting for the operation

of the FA chain to be completed. The skip operation is performed using the gates and the multiplexer shown in the figure. Based

on this explanation, the N FAs of the CSKA are grouped in Q stages. Each stage contains an RCA block with M j FAs (j =

1, . . . , Q) and a skip logic. In each stage, the inputs of the multiplexer (skip logic) are the carry input of the stage and the carry

output of its RCA block (FA chain). In addition, the product of the propagation signals (P) of the stage is used as the selector

signal of the multiplexer.

The CSKA may be implemented using FSS and VSS where the highest speed may be obtained for the VSS structure [19], [22].

Here, the stage size is the same as the RCA block size. In Sections III-A and III-B, these two different implementations of the

CSKA adder are described in more detail.

P. Shalini et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.12, December- 2016, pg. 26-37

© 2016, IJCSMC All Rights Reserved 29

A. Fixed Stage Size CSKA

By assuming that each stage of the CSKA contains M FAs, there are Q = N /M stages where for the sake of simplicity,

we assume Q is an integer. The input signals of the j th multiplexer are the carry output of the FAs chain in the j th stage denoted

by C0
j, the carry output of the previous stage (carry input of the j th stage) denoted by C1

j (Fig. 1).

The critical path of the CSKA contains three parts: 1) the path of the FA chain of the first stage whose delay is equal to M ×

TCARRY; 2) the path of the intermediate carry skip multiplexer whose delay is equal to the (Q ï 1) × TMUX; and 3) the path of the

FA chain in the last stage whose its delay is equal to the (M ī 1) × TCARRY + TSUM. Note that TCARRY, TSUM, and TMUX are the

propagation delays of the carry output of an FA, the sum output of an FA, and the output delay of a 2:1 multiplexer, respectively.

Hence, the critical path delay of a FSS CSKA is formulated by

TD = [M × TCARRY] + [(N/M-1)*TMUX] + [(M ī 1) × TCARRY + TSUM].
Based on (1), the optimum value of M (Mopt) that leads to optimum propagation delay may be calculated as (0.5NŬ)1/2 where Ŭ

is equal to TMUX/TCARRY. Therefore, the optimum propagation delay (TD,opt) is obtained from

TD,opt = 2 ã2NT CARRYTMUX + (TSUM ī TCARRY ī TMUX)

= TSUM + (2 ã 2NŬī1īŬ) Ĭ TCARRY.

Thus, the optimum delay of the FSS CSKA is almost proportional to the square root of the product of N and Ŭ [19]. B. Variable

Stage Size CSKA As mentioned before, by assigning variable sizes to the stages, the speed of the CSKA may be improved. The

speed improvement in this type is achieved by lowering the delays of the first and third terms in (1). These delays are minimized

by lowering sizes of first and last RCA blocks. For instance, the first RCA block size may be set to one, whereas sizes of the

following blocks may increase. To determine the rate of increase, let us express the propagation delay of the Cj
1 (t1 j) by

 t1j = max(t
 0
 jī1,t

1 jī1) + TMUX (3)

Where t 0 jī1, t
1 jī1 shows the calculating delay of C0 jī1(C1 jī1) signal in the (j ī 1)th stage. In a FSS CSKA, except in the first

stage, t 0 j is smaller than t 1 j . Hence, based on (3), the delay of t 0 jī1 may be increased from t 0 1 to t 1 jī1 without increasing

the delay of C1 j signal. This means that one could increase the size of the (j ī 1)th stage (i.e., Mjī1) without increasing the

propagation delay of the CSKA. Therefore, increasing the size of Mj for the jth stage should be bounded by

 t 0 j Ò t 1 j = t 0 1 + (j ī 1)TMUX. (4)

Since the last RCA block size also should be minimized, the increase in the stage size may not be continued to the last RCA

block. Thus, we justify the decrease in the RCA block sizes toward the last stage. First, note that based on Fig. 1, the output of

the jth stage is, in the worst case, accessible after t1 j + TSUM,j . Assuming that the pth stage has the maximum RCA block size,
we wish to keep the delay of the outputs of the following stages to be equal to the delay of the output of the pth stage. To keep

the same worst case delay for the critical path, we should reduce the size of the following RCA blocks. For example, when i Ó p,

for the (i +1)th stage, the output delay is t 1 i + TMUX + TSUM,i+1, where TSUM,i+1 is the delay of the (i + 1)th RCA block

for calculating all of its sum outputs when its carry input is ready. Therefore, the size of the (i + 1)th stage should be reduced to

decrease TSUM,i+1 preventing the increase in the worst case delay (TD) of the adder. In other words, we eliminate the increase

in the delay of the next stage due to the additional multiplexer by reducing the sum delay of the RCA block. This may be

analytically expressed as

 TSUM,i+1 Ò TSUM,i ī TMUX; for i Ó p. (5)

The trend of decreasing the stage size should be continued until we produce the required number of adder bits. Note that, in this

case, the size of the last RCA block may only be one (i.e., one FA). Hence, to reach the highest number of input bits under a

constant propagation delay, both (4) and (5) should be satisfied. Having these constraints, we can minimize the delay of the

CSKA for a given number of input bits to find the stages sizes for an optimal structure. In this optimal CSKA, the size of first p
stages is increased, while the size of the last (Q ī p) stages is decreased. For this structure, the pth stage, which is called nucleus

of the adder, has the maximum size [24]. Now, let us find the constraints used for determining the optimum structure in this case.

As mentioned before, when the jth stage is not in the propagate mode, the carry output of the stage is C0 j . In this case, the

maximum of t 0 j is equal to Mj × TCARRY. To satisfy (4), we increase the size of the first p stages up to the nucleus using [19]

 Mj Ò M1 + (j ī 1)Ŭ; for 1 Ò j Ò p. (6)

In addition, the maximum of TSUM,i is equal to (Mi ī 1) Ĭ TCARRY + TSUM. To satisfy (5), the size of the last (Q ī p) stages

from the nucleus to the last stage should decrease based on [19]

 Mi Ó MQ + (Q ī i)Ŭ; for p Ò i Ò Q. (7)

In the case, where Ŭ is an integer value, the exact sizes of stages for the optimal structure can be determined. Subsequently, the

optimal values of M1, MQ , and Q as well as the delay of the optimal CSKA may be calculated [19]. In the case, where Ŭ is a

non-integer value, one may realize only a near optimal structure, as detailed in [19] and [21]. In this case, most of the time, by
setting M1 to 1 and using (6) and (7), the near-optimal structure is determined. It should be noted that, in practice, Ŭ is non-

integer whose value is smaller than one. This is the case that has been studied in [19], where the estimation of the near-optimal

propagation delay of the CSKA is given by [19]

 (8)

This equation may be written in a more general form by replacing TMUX by TSKIP to allow for other logic types instead of the

multiplexer. For this form, Ŭ becomes equal to TSKIP/TCARRY. Finally, note that in real implementations, TSKIP < TCARRY, and

hence, _Ŭ/2_ becomes equal to one.

P. Shalini et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.12, December- 2016, pg. 26-37

© 2016, IJCSMC All Rights Reserved 30

Thus, (8) may be written as

 (9)

Note that, as (9) reveals that a large portion of the critical path delay is due to the carry skip logics.

Fig. 2. Proposed CI-CSKA structure.

IV. PROPOSED CSKA STRUCTURE

Based on the discussion presented in Section III, it is concluded that by reducing the delay of the skip logic, one may lower the

propagation delay of the CSKA significantly. Hence, in this paper, we present a modified CSKA structure that reduces this delay.

A. General Description of the Proposed Structure

The structure is based on combining the concatenation and the incrementation schemes [13] with the Conv-CSKA structure, and

hence, is denoted by CI-CSKA. It provides us with the ability to use simpler carry skip logics. The logic replaces 2:1

multiplexers by AOI/OAI compound gates (Fig. 2). The gates, which consist of fewer transistors, have lower delay, area, and

smaller power consumption compared with those of the 2:1 multiplexer [37]. Note that, in this structure, as the carry propagates

through the skip logics, it becomes complemented. Therefore, at the output of the skip logic of even stages, the complement of

the carry is generated. The structure has a considerable lower propagation delay with a slightly smaller area compared with those

of the conventional one. Note that while the power consumptions of the AOI (or OAI) gate are smaller than that of the
multiplexer, the power consumption of the proposed CI-CSKA is a little more than that of the conventional one. This is due to

the increase in the number of the gates, which imposes a higher wiring capacitance (in the noncritical paths). Now, we describe

the internal structure of the proposed CI-CSKA shown in Fig. 2 in more detail. The adder contains two N bits inputs, A and B,

and Q stages. Each stage consists of an RCA block with the size of Mj (j = 1, . . . , Q). In this structure, the carry input of all the

RCA blocks, except for the first block which is Ci , is zero (concatenation of the RCA blocks). Therefore, all the blocks execute

their jobs simultaneously. In this structure, when the first block computes the summation of its corresponding input bits (i.e.,

SM1, . . . , S1), and C1, the other blocks simultaneously compute the intermediate results [i.e., { ZK j+Mj , . . . , ZK j+2, ZK j+1}

for K j = jī1 r=1 Mr (j = 2, . . . , Q)], and also Cj signals. In the proposed structure, the first stage has only one block, which is

RCA. The stages 2 to Q consist of two blocks of RCA and incrementation.

Fig. 3. Internal structure of the j th incrementation block

The incrementation block uses the intermediate results generated by the RCA block and the carry output of the previous stage to

calculate the final summation of the stage. The internal structure of the incrementation block, which contains a chain of half-

adders (HAs), is shown in Fig. 3. In addition, note that, to reduce the delay considerably, for computing the carry output of the

stage, the carry output of the incrementation block is not used. As shown in Fig. 2, the skip logic determines the carry output of

the j th stage (CO, j) based on the intermediate results of the j th stage and the carry output of the previous stage (CO, jī1) as well

as the carry output of the corresponding RCA block (Cj). When determining CO, j , these cases may be encountered. When Cj is

