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Abstract— Local search metaheuristic algorithms are proven & powerful 

combinatorial optimization strategies to tackle hard problems like traveling 

salesman problem. These algorithms explore & evaluate neighbors of a single 

solution. Time Consuming LSM algorithms can be improved by parallelizing 

exploration & evaluation of neighbors of a solution. GPU architecture is 

suitable for algorithms of single program multiple data parallelism. 

Implemented algorithm reduces time consuming memory transfers and 

improves computational time by efficient use of memory hierarchy. 
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I. INTRODUCTION 

Local search metaheuristics algorithms are among the most powerful strategies for solving hard problem from 

areas like design, logistics [8], biology [4] etc. Local search algorithms handle a single solution iteratively 
improved by exploring and evaluating neighborhood of a solution. Fig. 1 shows a general model of local search 

metaheuristic algorithms. 
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Fig. 1: General Model of LSM 

Many NP hard problems from industry [4] and science [8] are successfully solved with such combinatorial 

optimization techniques.  

General local search metaheuristic techniques are tabu Search [3], simulated annealing, guided local search, 

iterative local search and variable neighborhood search [9].  

To implement local search, we need to encode our solution in suitable representation which affects performance. 

Binary encoding, vector of discrete values, permutation and vector of real values are four main encodings [5]. 

According to results and studies, Increase in neighborhood exploration improves quality of solution [10]. 

Although Local search metaheuristics (LSM) are effective techniques, problems are also becoming large and 

complex [11]. To solve large problems, we also need to equip with large computational power.  

Initially, a local search metaheuristic algorithm starts with a randomly generated solution. After every iteration 
of the algorithm, the current solution is replaced by another solution selected from the neighboring candidates of 

a solution, and so on. An evaluation function calculates a fitness value to each solution as per the problem. 

Many strategies can be applied for the selection of a next solution: best improvement, first improvement, 

random selection, etc.  Performance of local search is remarkably improved with parallel execution of 

exploration and execution process. Three major parallel models for local search are: solution level, iteration 

level and algorithmic level [12] [15] [11]. Solution level parallel model consists of parallelizing time intensive 

task of the algorithm. These kinds of models are problem dependant and are not always possible. Iteration level 

parallel model consists of parallel evaluation of all neighbors of a solution. It is a master-worker model which 

does not alter behavior of algorithm. Algorithmic-level parallel model consists of several self-configured 

algorithms in parallel. All instances may work in cooperation or independently [7] [9]. 

   GPU architecture provides a very high computation power and very high memory bandwidth compared to 
traditional CPUs. GPUs have evolved into a mulithreaded, highly parallel and many core architecture due to 

demand for 3D high-definition graphics [16].  

Luong V. et. al [1] and Rocki, K. et. al [2] successfully tested local search algorithms on GPU. In which, 

Evaluation of neighborhood is performed on GPU, and rest of local search algorithm work is carried out on CPU. 

To do this, lot of transfer of solutions from CPU to GPU and vice versa need to be done. 

We have implemented a solution level parallel model for local search metaheuristic algorithms on GPU. We 

tested our approach on travelling salesman problem for varying cities datasets.  

Section II presents literature review of local search metaheuristic algorithms. Section III describes mathematical 

model. Section IV presents proposed work. Section V presents system architecture. Section VI discusses data 

sets and result sets. Section VII summarizes the method. 
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II. GPU ARCHITECTURE 

 

 

Fig. 2: CPU vs. GPU 

  A GPU has a large number of arithmetic units with a limited cache and few control units. This allows the GPU 

to calculate in a massive and parallel way the rendering of small and independent elements, while having a large 

flow of data processed. Since more transistors are devoted to data processing rather than data caching and flow 

control, GPU is specialized for compute-intensive and highly parallel computations. It is composed of streaming 

multiprocessors (SMs), each containing a certain number of streaming processors (SPs) i.e. processor cores. 

Each core executes a single thread instruction in a SIMD (single-instruction multiple-data) fashion, with the 

instruction unit distributing the current instruction to the cores [16] [17]. 

In GPU, multiple processors simultaneously execute the same program on different data. To achieve this, 

“kernel” concept is introduced. The kernel function is callable from CPU and executed on the GPU by several 

processors in parallel simultaneously. This kernel handling is dependent of the general-purpose language. 
CUDA (Compute Unified Device Architecture) is a parallel computing environment, which facilitates an 

application programming interface for NVIDIA architectures. GPU thread can be seen as an element of the data 

to be processed. CUDA threads are lightweight than CPU threads. Changing the context between two CUDA 

threads is not a costly operation. Threads are grouped within a structure called blocks. A kernel is executed by 

multiple equally threaded blocks. Blocks can be organized into a one or two-dimensional grid of thread blocks, 

and threads inside a block are grouped in a similar way. All the threads belonging to the same thread block will 

be assigned as a group to a single multiprocessor, while different thread blocks can be assigned to different 

multiprocessors. Thus, a unique id can be assigned for each thread to perform computation on different data [17] 

[18]. 

 

 

Fig. 3: GPU Threads Model 
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III. LITERATURE REVIEW 

Parallel design and implementation of metaheuristics have been studied as well on different architectures. Some 

of them are using massively parallel processors [20], clusters of workstations [21] and shared memory or SMP 

machines [22], large-scale computational grids [19] .  

Recently, Rocki, K., Suda, R. implemented 2-opt and 3-opt iterated local search metaheuristic algorithms on 

GPU to solve traveling salesman problem using standard set of libraries- TSPlib [2]. The core idea is to take a 

path which crosses over itself and reshuffle it so that it does not. Use of GPU greatly decreases the time needed 

to search best edges to be exchanged in a route. 

The 2-opt algorithm basically removes two edges from the tour, and reconnects the two new sub-tours 

created. This is often referred to as a 2-opt move. There is only one way to reconnect the two sub-tours so that 

the tour remains valid. The steps are repeated only as long as the new tour is shorter. Figure 8 shows example of 

2-opt step. The following step will be taken on following condition. If addition of distances of edges (B,F) and 
(G,D) is greater than addition of distances edges (B,D) and (G,F). 

 

 

Fig. 4: 2-opt  

 

Using GPU, the time needed to find the best edges to be swapped in a route is greatly decreases. Their results 

show that by using GPU algorithm, the time can be decreased approximately 3 to 26 times compared to parallel 

CPU code using 32 cores.  

 

Overview of 2-opt and 3-opt GPU algorithm  
1. Copy the tour and the coordinates to the GPU global memory (CPU)  

2. Execute the kernel 

3. Copy the tour and coordinates to the shared memory  

4. Calculate swap effect of one pair  

5. Find the best value and store it in the global memory  

6. Read the result (CPU) 

Results show that more than 90% of the time during iterated Local Search is spent on the 2-opt itself its 
increasing with the size of problem size. Distance between nodes need to be calculated to know effect of edges 

exchange. Calculation of distance based on nodes coordinates than using Look up table is proved to better way 

in terms of memory usage. First way is further optimized by placing nodes coordinate’s data on on-chip shared 

memory which limits number of cities to 4800. Overall, GPU acceleration to 2-opt and 3-opt search compared to 

the 32 CPU cores acceleration ranged from 3 to 20 and 12-26 for the respectively. 

Luong, Melab and Talbi [1] proposed very efficient approaches for design and implementation of LSM 

algorithms. Iteration-level parallel model is used and tested for the traveling salesman problem (TSP), quadratic 

assignment problem (QAP), permuted perceptron problem (PPP) and continuous weierstrass function. 

 

Algorithm 1: Local Search Template Proposed by Luong, Melab and Talibi 

1: Choose an initial solution 

2: Evaluate the solution 

3: Specific LSM initializations 

4: Allocate problem inputs on GPU memory 

5: Allocate a solution on GPU memory 

6: Allocate a fitnesses structure on GPU memory 

7: Allocate additional structures on GPU memory 
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8: Copy problem inputs on GPU memory 

9: Copy the initial solution on GPU memory 

10: Copy additional structures on GPU memory 

11: repeat 

12:  for each neighbor in parallel do 

13:   Incremental evaluation of the candidate solution 

14:   Insert the resulting fitness into the fitnesses structure 

15:  end for 

16:  Copy the fitnesses structure on CPU memory 

17:  Specific LSM selection strategy on the fitnesses structure 

18:  Specific LSM post-treatment 

19:  Copy the chosen solution on GPU memory 

20:  Copy additional structures on GPU memory 

21: until a stopping criterion satisfied 

 

Neighborhood generation on CPU and its evaluation on GPU is a straightforward approach in which for every 

iteration associated structure is copied from CPU to GPU. Neighborhood generation and its evaluation on GPU 

is more complex for thread mapping to neighbor but significantly reduces data transfers. For some LSMs like 

hill climbing parallel reduction techniques are applied to find proper minimum fitness structure which 

additionally optimizes data transfer. 

IV. PROPOSED SOLUTION 

Solution level parallel model is suitable for reducing data transfers between CPU and GPU memories which is 

time ingesting task [20] [23]. Evaluation of neighbourhood is performed on GPU before every iteration. This 

needs to copy solution from CPU memory to GPU memory. The results obtained need to be copied back to CPU 

memory. Best solution is chosen using the copied results. Thus there are many memory transfers between CPU 
and GPU memory [25]. Proposed solution modifies algorithm which will reduce data transfers and all 

operations on GPU.  

Increase of local search in neighbourhood of a solution also increases quality of solution. By parallelization of 

2-opt step for a single tour to a single thread block instead of threads reduces memory usage per block. This 

strategy is helpful to scale up algorithm as per capacity of GPU for simultaneous blocks execution. Based on 

number of cities and shared memory availability, algorithm calculates best number of threads per block.    

Algorithm 2 shows our proposed algorithm. 

 

Algorithm 2: Proposed Algorithm 

1: Choose an initial solution 

2: Evaluate the solution 

3: Allocate GPU memory for problem inputs 

4: Allocate GPU memory for initial solution 

5: Allocate GPU memory for generated neighbours from initial solution 

6: Allocate GPU memory for storing results of neighborhood evaluation that is fitness structure  

7: Copy problem inputs and initial solution on GPU memory 

8: repeat 

9:  Launch kernel to generate neighbors of chosen solution at calculated memory locations 

10:  Launch second kernel for evaluation of all neighbors in parallel. Insert the result to fitness structure 

11:  Launch third kernel of selection strategy over calculated fitness structure for selection of next solution 

to evaluate 

12:  Set chosen solution as a next candidate for generation and evaluation of neighborhood 

13: until a termination criterion satisfied 

14: Copy best solution to CPU memory 

 

   Initial solution is chosen to evaluate on CPU. GPU memory is allocated for initial solution, problem inputs 

(for example, lookup table for TSP problem), and neighborhood. As results of every neighbor evaluation need to 

be stored for comparisons, fitness structure is allocated for storing results on GPU. Initial solution and problem 

inputs are copied on GPU memory. To generate neighborhood of candidate solution, first kernel is launched. 

Every neighbor is stored in a mapped memory location. Second kernel is launched to evaluate every neighbor in 
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parallel by mapping a thread to it. Third kernel is launched to select best solution among all evaluated neighbors. 

Reduction techniques can be employed for this if minimum fitness needs to be computed. Chosen solution is 

configured a next candidate for evaluation. Advantage of this approach over iteration-level is reduction memory 

transfer operations and utilization of GPU computing power for useful work. This approach can be parallelized 

for more than one candidate solution in which availability of memory can put a limit on large neighbourhood 

LSM algorithms. 
  To validate our approach, proposed algorithm is implemented for travelling salesman problem (TSP) [6] [13] 

[14]. NVIDIA GPU GTX 680 graphics card using CUDA 5.5 platform architecture is used. 

V. RESULTS 

   TSPlib is a benchmark library contains set of instances of real life travelling salesman problems [24]. We 

chose datasets of varying number of cities ranging from 127 to 24978. We tested our approach with varying 

number of blocks. As per the results, increase in number of blocks also increases quality of solution that is 

minimizes tour length in this case. 

TABLE I: RESULTS 

Dataset No. of cities No. of Blocks Time Cost of Tour 

bier127 127 100 0.0139 s 119892 

  10000 1.0561 s 119109 

  20000 1.957 s 118607 

ch130 130 100 0.0146 s 6321 

  200 0.0290 s 6263 

  400 0.0551 s 6258 

  500 0.0600 s 6258 

  10000 1.0689 s 6159 

  20000 2.1223 s 6157 

  50000 5.2541 s 6153 

  100000 10.5240 s 6148 

  200000 21.0184 s 6110 

pr1002 1002 100 1.5762 s 278381 

  200 3.2850 s 278621 

  300 4.8314 s 276084 

  2000 29.1702 s 274778 

  10000 144.6441 s 274025 

fnl4461 4461 2 77.0407 s 203096 

  10 77.9637 s 202929 

  20 80.57525 s 202587 

  30 83.5190 s 202488 

  100 139.6203 s 202347 

usa13509 13509 2 2310.1165 s 22090071 

  50 9321.2440 s 21999132 

d18512 18512 2 5770.9347 s 719576 

sw24978 24978 16 15071.5507 s 949792 

 

VI. CONCLUSIONS 

In this paper we have presented a solution level parallel model implementation for 2-opt local search of 

Travelling Salesman Problem. Parallel implementation of local search metaheuristics allows to improve the 

quality of solution by exploring into more neighbourhood of solution. GPU computing has been revealed to be a 

good way to provide such high performance computational power. 
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