
S. V. Ghorpade et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7, July- 2014, pg. 268-274

© 2014, IJCSMC All Rights Reserved 268

Available Online at www.ijcsmc.com

International Journal of Computer Science and Mobile Computing

A Monthly Journal of Computer Science and Information Technology

ISSN 2320–088X

IJCSMC, Vol. 3, Issue. 7, July 2014, pg.268 – 274

 RESEARCH ARTICLE

Solution Level Parallelization of Local

Search Metaheuristic Algorithm on GPU

Mr. S. V. Ghorpade, Prof. Mrs. S. M. Kamalapur

PG Student, Department of Computer Engineering, KKWIEER, University of Pune, India

Department of Computer Engineering, KKWIEER, University of Pune, India

swapnilghorpade@gmail.com; snheal_kamalapur@yahoo.com

Abstract— Local search metaheuristic algorithms are proven & powerful

combinatorial optimization strategies to tackle hard problems like traveling

salesman problem. These algorithms explore & evaluate neighbors of a single

solution. Time Consuming LSM algorithms can be improved by parallelizing

exploration & evaluation of neighbors of a solution. GPU architecture is

suitable for algorithms of single program multiple data parallelism.

Implemented algorithm reduces time consuming memory transfers and

improves computational time by efficient use of memory hierarchy.

Keywords— Combinatorial Optimization, GPU, Local Search Metaheuristics,

Parallel Computing

I. INTRODUCTION

Local search metaheuristics algorithms are among the most powerful strategies for solving hard problem from

areas like design, logistics [8], biology [4] etc. Local search algorithms handle a single solution iteratively
improved by exploring and evaluating neighborhood of a solution. Fig. 1 shows a general model of local search

metaheuristic algorithms.

S. V. Ghorpade et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7, July- 2014, pg. 268-274

© 2014, IJCSMC All Rights Reserved 269

Fig. 1: General Model of LSM

Many NP hard problems from industry [4] and science [8] are successfully solved with such combinatorial

optimization techniques.

General local search metaheuristic techniques are tabu Search [3], simulated annealing, guided local search,

iterative local search and variable neighborhood search [9].

To implement local search, we need to encode our solution in suitable representation which affects performance.

Binary encoding, vector of discrete values, permutation and vector of real values are four main encodings [5].

According to results and studies, Increase in neighborhood exploration improves quality of solution [10].

Although Local search metaheuristics (LSM) are effective techniques, problems are also becoming large and

complex [11]. To solve large problems, we also need to equip with large computational power.

Initially, a local search metaheuristic algorithm starts with a randomly generated solution. After every iteration
of the algorithm, the current solution is replaced by another solution selected from the neighboring candidates of

a solution, and so on. An evaluation function calculates a fitness value to each solution as per the problem.

Many strategies can be applied for the selection of a next solution: best improvement, first improvement,

random selection, etc. Performance of local search is remarkably improved with parallel execution of

exploration and execution process. Three major parallel models for local search are: solution level, iteration

level and algorithmic level [12] [15] [11]. Solution level parallel model consists of parallelizing time intensive

task of the algorithm. These kinds of models are problem dependant and are not always possible. Iteration level

parallel model consists of parallel evaluation of all neighbors of a solution. It is a master-worker model which

does not alter behavior of algorithm. Algorithmic-level parallel model consists of several self-configured

algorithms in parallel. All instances may work in cooperation or independently [7] [9].

 GPU architecture provides a very high computation power and very high memory bandwidth compared to
traditional CPUs. GPUs have evolved into a mulithreaded, highly parallel and many core architecture due to

demand for 3D high-definition graphics [16].

Luong V. et. al [1] and Rocki, K. et. al [2] successfully tested local search algorithms on GPU. In which,

Evaluation of neighborhood is performed on GPU, and rest of local search algorithm work is carried out on CPU.

To do this, lot of transfer of solutions from CPU to GPU and vice versa need to be done.

We have implemented a solution level parallel model for local search metaheuristic algorithms on GPU. We

tested our approach on travelling salesman problem for varying cities datasets.

Section II presents literature review of local search metaheuristic algorithms. Section III describes mathematical

model. Section IV presents proposed work. Section V presents system architecture. Section VI discusses data

sets and result sets. Section VII summarizes the method.

S. V. Ghorpade et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7, July- 2014, pg. 268-274

© 2014, IJCSMC All Rights Reserved 270

II. GPU ARCHITECTURE

Fig. 2: CPU vs. GPU

 A GPU has a large number of arithmetic units with a limited cache and few control units. This allows the GPU

to calculate in a massive and parallel way the rendering of small and independent elements, while having a large

flow of data processed. Since more transistors are devoted to data processing rather than data caching and flow

control, GPU is specialized for compute-intensive and highly parallel computations. It is composed of streaming

multiprocessors (SMs), each containing a certain number of streaming processors (SPs) i.e. processor cores.

Each core executes a single thread instruction in a SIMD (single-instruction multiple-data) fashion, with the

instruction unit distributing the current instruction to the cores [16] [17].

In GPU, multiple processors simultaneously execute the same program on different data. To achieve this,

“kernel” concept is introduced. The kernel function is callable from CPU and executed on the GPU by several

processors in parallel simultaneously. This kernel handling is dependent of the general-purpose language.
CUDA (Compute Unified Device Architecture) is a parallel computing environment, which facilitates an

application programming interface for NVIDIA architectures. GPU thread can be seen as an element of the data

to be processed. CUDA threads are lightweight than CPU threads. Changing the context between two CUDA

threads is not a costly operation. Threads are grouped within a structure called blocks. A kernel is executed by

multiple equally threaded blocks. Blocks can be organized into a one or two-dimensional grid of thread blocks,

and threads inside a block are grouped in a similar way. All the threads belonging to the same thread block will

be assigned as a group to a single multiprocessor, while different thread blocks can be assigned to different

multiprocessors. Thus, a unique id can be assigned for each thread to perform computation on different data [17]

[18].

Fig. 3: GPU Threads Model

S. V. Ghorpade et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7, July- 2014, pg. 268-274

© 2014, IJCSMC All Rights Reserved 271

III. LITERATURE REVIEW

Parallel design and implementation of metaheuristics have been studied as well on different architectures. Some

of them are using massively parallel processors [20], clusters of workstations [21] and shared memory or SMP

machines [22], large-scale computational grids [19] .

Recently, Rocki, K., Suda, R. implemented 2-opt and 3-opt iterated local search metaheuristic algorithms on

GPU to solve traveling salesman problem using standard set of libraries- TSPlib [2]. The core idea is to take a

path which crosses over itself and reshuffle it so that it does not. Use of GPU greatly decreases the time needed

to search best edges to be exchanged in a route.

The 2-opt algorithm basically removes two edges from the tour, and reconnects the two new sub-tours

created. This is often referred to as a 2-opt move. There is only one way to reconnect the two sub-tours so that

the tour remains valid. The steps are repeated only as long as the new tour is shorter. Figure 8 shows example of

2-opt step. The following step will be taken on following condition. If addition of distances of edges (B,F) and
(G,D) is greater than addition of distances edges (B,D) and (G,F).

Fig. 4: 2-opt

Using GPU, the time needed to find the best edges to be swapped in a route is greatly decreases. Their results

show that by using GPU algorithm, the time can be decreased approximately 3 to 26 times compared to parallel

CPU code using 32 cores.

Overview of 2-opt and 3-opt GPU algorithm
1. Copy the tour and the coordinates to the GPU global memory (CPU)

2. Execute the kernel

3. Copy the tour and coordinates to the shared memory

4. Calculate swap effect of one pair

5. Find the best value and store it in the global memory

6. Read the result (CPU)

Results show that more than 90% of the time during iterated Local Search is spent on the 2-opt itself its
increasing with the size of problem size. Distance between nodes need to be calculated to know effect of edges

exchange. Calculation of distance based on nodes coordinates than using Look up table is proved to better way

in terms of memory usage. First way is further optimized by placing nodes coordinate’s data on on-chip shared

memory which limits number of cities to 4800. Overall, GPU acceleration to 2-opt and 3-opt search compared to

the 32 CPU cores acceleration ranged from 3 to 20 and 12-26 for the respectively.

Luong, Melab and Talbi [1] proposed very efficient approaches for design and implementation of LSM

algorithms. Iteration-level parallel model is used and tested for the traveling salesman problem (TSP), quadratic

assignment problem (QAP), permuted perceptron problem (PPP) and continuous weierstrass function.

Algorithm 1: Local Search Template Proposed by Luong, Melab and Talibi

1: Choose an initial solution

2: Evaluate the solution

3: Specific LSM initializations

4: Allocate problem inputs on GPU memory

5: Allocate a solution on GPU memory

6: Allocate a fitnesses structure on GPU memory

7: Allocate additional structures on GPU memory

S. V. Ghorpade et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7, July- 2014, pg. 268-274

© 2014, IJCSMC All Rights Reserved 272

8: Copy problem inputs on GPU memory

9: Copy the initial solution on GPU memory

10: Copy additional structures on GPU memory

11: repeat

12: for each neighbor in parallel do

13: Incremental evaluation of the candidate solution

14: Insert the resulting fitness into the fitnesses structure

15: end for

16: Copy the fitnesses structure on CPU memory

17: Specific LSM selection strategy on the fitnesses structure

18: Specific LSM post-treatment

19: Copy the chosen solution on GPU memory

20: Copy additional structures on GPU memory

21: until a stopping criterion satisfied

Neighborhood generation on CPU and its evaluation on GPU is a straightforward approach in which for every

iteration associated structure is copied from CPU to GPU. Neighborhood generation and its evaluation on GPU

is more complex for thread mapping to neighbor but significantly reduces data transfers. For some LSMs like

hill climbing parallel reduction techniques are applied to find proper minimum fitness structure which

additionally optimizes data transfer.

IV. PROPOSED SOLUTION

Solution level parallel model is suitable for reducing data transfers between CPU and GPU memories which is

time ingesting task [20] [23]. Evaluation of neighbourhood is performed on GPU before every iteration. This

needs to copy solution from CPU memory to GPU memory. The results obtained need to be copied back to CPU

memory. Best solution is chosen using the copied results. Thus there are many memory transfers between CPU
and GPU memory [25]. Proposed solution modifies algorithm which will reduce data transfers and all

operations on GPU.

Increase of local search in neighbourhood of a solution also increases quality of solution. By parallelization of

2-opt step for a single tour to a single thread block instead of threads reduces memory usage per block. This

strategy is helpful to scale up algorithm as per capacity of GPU for simultaneous blocks execution. Based on

number of cities and shared memory availability, algorithm calculates best number of threads per block.

Algorithm 2 shows our proposed algorithm.

Algorithm 2: Proposed Algorithm

1: Choose an initial solution

2: Evaluate the solution

3: Allocate GPU memory for problem inputs

4: Allocate GPU memory for initial solution

5: Allocate GPU memory for generated neighbours from initial solution

6: Allocate GPU memory for storing results of neighborhood evaluation that is fitness structure

7: Copy problem inputs and initial solution on GPU memory

8: repeat

9: Launch kernel to generate neighbors of chosen solution at calculated memory locations

10: Launch second kernel for evaluation of all neighbors in parallel. Insert the result to fitness structure

11: Launch third kernel of selection strategy over calculated fitness structure for selection of next solution

to evaluate

12: Set chosen solution as a next candidate for generation and evaluation of neighborhood

13: until a termination criterion satisfied

14: Copy best solution to CPU memory

 Initial solution is chosen to evaluate on CPU. GPU memory is allocated for initial solution, problem inputs

(for example, lookup table for TSP problem), and neighborhood. As results of every neighbor evaluation need to

be stored for comparisons, fitness structure is allocated for storing results on GPU. Initial solution and problem

inputs are copied on GPU memory. To generate neighborhood of candidate solution, first kernel is launched.

Every neighbor is stored in a mapped memory location. Second kernel is launched to evaluate every neighbor in

S. V. Ghorpade et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7, July- 2014, pg. 268-274

© 2014, IJCSMC All Rights Reserved 273

parallel by mapping a thread to it. Third kernel is launched to select best solution among all evaluated neighbors.

Reduction techniques can be employed for this if minimum fitness needs to be computed. Chosen solution is

configured a next candidate for evaluation. Advantage of this approach over iteration-level is reduction memory

transfer operations and utilization of GPU computing power for useful work. This approach can be parallelized

for more than one candidate solution in which availability of memory can put a limit on large neighbourhood

LSM algorithms.
 To validate our approach, proposed algorithm is implemented for travelling salesman problem (TSP) [6] [13]

[14]. NVIDIA GPU GTX 680 graphics card using CUDA 5.5 platform architecture is used.

V. RESULTS

 TSPlib is a benchmark library contains set of instances of real life travelling salesman problems [24]. We

chose datasets of varying number of cities ranging from 127 to 24978. We tested our approach with varying

number of blocks. As per the results, increase in number of blocks also increases quality of solution that is

minimizes tour length in this case.

TABLE I: RESULTS

Dataset No. of cities No. of Blocks Time Cost of Tour

bier127 127 100 0.0139 s 119892

 10000 1.0561 s 119109

 20000 1.957 s 118607

ch130 130 100 0.0146 s 6321

 200 0.0290 s 6263

 400 0.0551 s 6258

 500 0.0600 s 6258

 10000 1.0689 s 6159

 20000 2.1223 s 6157

 50000 5.2541 s 6153

 100000 10.5240 s 6148

 200000 21.0184 s 6110

pr1002 1002 100 1.5762 s 278381

 200 3.2850 s 278621

 300 4.8314 s 276084

 2000 29.1702 s 274778

 10000 144.6441 s 274025

fnl4461 4461 2 77.0407 s 203096

 10 77.9637 s 202929

 20 80.57525 s 202587

 30 83.5190 s 202488

 100 139.6203 s 202347

usa13509 13509 2 2310.1165 s 22090071

 50 9321.2440 s 21999132

d18512 18512 2 5770.9347 s 719576

sw24978 24978 16 15071.5507 s 949792

VI. CONCLUSIONS

In this paper we have presented a solution level parallel model implementation for 2-opt local search of

Travelling Salesman Problem. Parallel implementation of local search metaheuristics allows to improve the

quality of solution by exploring into more neighbourhood of solution. GPU computing has been revealed to be a

good way to provide such high performance computational power.

ACKNOWLEDGMENT

 We gratefully acknowledge the support of NVIDIA Corporation with the donation of the kepler architecture

(GTX 680) GPU used for this research.

REFERENCES

[1] The Van Luong; Melab, N.; Talbi, E.-G., "GPU Computing for Parallel Local Search Metaheuristic
Algorithms," Computers, IEEE Transactions on , vol.62, no.1, pp.173,185, Jan. 2013

[2] Rocki, K.; Suda, R., "Accelerating 2-opt and 3-opt local search using GPU in the travelling salesman

problem," High Performance Computing and Simulation, 2012 International Conference on , vol., no.,

pp.489,495, 2-6 July 2012

S. V. Ghorpade et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.7, July- 2014, pg. 268-274

© 2014, IJCSMC All Rights Reserved 274

[3] E.D. Taillard, “Robust Taboo Search for the Quadratic Assignment Problem,” Parallel Computing, vol. 17,

nos. 4/5, pp. 443-455, 1991.

[4] E. Lutton and J.L. Ve hel, “Holder Functions and Deception of Genetic Algorithms,” IEEE Trans.

Evolutionary Computation, vol. 2, no. 2, pp. 56-71, July 1998.

[5] E.-G. Talbi, Metaheuristics: From Design to Implementation. Wiley, 2009.

[6] Helsgaun, K.; An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic, European
Journal of Operational Research, 2000, vol 126, pages 106-130

[7]V. Boyer, D. El Baz, M. Elkihel, Solving knapsack problems on GPU, Computers & Operations Research,

Volume 39, Issue 1, January 2012, Pages 42-47

[8] Lee M.,Jeon J., Bae J., Jang H. S., Parallel implementation of a financial application on a GPU. Proceedings

of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, 2009.

[9] E. H. L. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization. John Wiley & Sons,

Chichester,UK, 1997

[10] E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary

Computation,6(5):443462, October 2002.

[11] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, and K. Skadron, “A Performance Study of General-

Purpose Applications on Graphics Processors Using Cuda,” J. Parallel Distributed Computing, vol. 68, no. 10,

pp. 1370-1380, 2008.
[12] T.-T. Wong and M.L. Wong, “Parallel Evolutionary Algorithms on Consumer-Level Graphics Processing

Unit,” Proc. Parallel Evolutionary Computations, pp. 133-155, 2006.

[13] M. Dorigo and L.M. Gambardella, “Ant Colony System: A Cooperative Learning Approach to the

Traveling Salesman Problem,” IEEE Trans. Evolutionary Computation, vol. 1, no. 1, pp. 53-66, Apr. 1997.

[14]E. Lutton and J.L. Ve hel, “Holder Functions and Deception of Genetic Algorithms,” IEEE Trans.

Evolutionary Computation, vol. 2, no. 2, pp. 56-71, July 1998.

[15] T. James, C. Rego, and F. Glover, “A Cooperative Parallel Tabu Search Algorithm for the Quadratic

Assignment Problem,” European J. Operational Research, vol. 195, pp. 810-826, 2009.

[16] NVIDIA, CUDA Programming Guide Version 5.0, 2013.

[17] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone and J. C. Phillips, “GPU Computing”, Vol. 96,

IEEE ,May 2008 ,Proceedings of the IEEE
[18] John Nickolls, William J. Dally, “GPU Computing Era”, IEEE MICRO, MARCH/APRIL 2010

[19] Enrique Alba, Francisco Luna, Antonio J. Nebro, and Jos e M. Troya. Parallel heterogeneous genetic

algorithms for continuous optimization. Parallel Computing, 30(5-6):699–719, 2004.

[20] J. Chakrapani and J. Skorin-Kapov. Massively Parallel Tabu Search for the Quadratic Assignment Problem.

Annals of Operations Research, 41:327–341, 1993.

[21] T.G. Crainic, M. Toulouse, and M. Gendreau. Parallel Asynchronous Tabu Search for Multicommodity

Location-Allocation with Balancing Requirements. Annals of Operations Research, 63:277–299, 1995.

[22] T. James, C. Rego, and F. Glover. A cooperative parallel tabu search algorithm for the quadratic

assignment problem. European Journal of Operational Research, 195:810–826, 2009.

[23] Alexandru-Adrian Tantar, Nouredine Melab, and El-Ghazali Talbi. A comparative study of parallel

metaheuristics for protein structure prediction on the computational grid. In IPDPS, pages 1–10. IEEE, 2007.

[24] Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Computing, Vol. 3, No. 4,
pp. 376- 384. Fall 1991.

[25] Phuong Hoai Ha; Tsigas, P.; Anshus, O.J., "The Synchronization Power of Coalesced Memory

Accesses,"Parallel and Distributed Systems, IEEE Transactions on ,vol.21, no.7, pp.939,953, July 2010

