CLUSTERING HIGH DIMENSIONAL COMBINING HUBNESS AND KERNEL MAPPING

Kavita R Dhoot, Prof. Manoj.N.Chaudhari

1M.Tech.-CSE, Priyadarshini Bhagwati College of Engg, Nagpur, Maharashtra, India
2CSE Department, Priyadarshini Bhagwati College of Engg, Nagpur, Maharashtra, India

1 kavya.dhoot@gmail.com; 2 manojchaudhari@gmail.com

Abstract: Clustering high dimensional data becomes challenging due to the increasing sparsity of such data. One of the inherent properties of high dimensional data is hubness phenomenon, which is used for clustering such data. Hubness is the tendency of high-dimensional data to contain points (hubs) that occurs frequently in k-nearest neighbor lists of other data points. The k-nearest-neighbor lists are used to measure the hubness score of each data point. The simple hub based clustering algorithms detect only hyperspherical clusters in the high dimensional dataset. But the real time high dimensional dataset contains more number of arbitrary shaped clusters. To improve the performance of clustering, a new algorithm is proposed which is based on the combination of kernel mapping and hubness phenomenon. The proposed algorithm detects arbitrary shaped clusters in the dataset and also improves the performance of clustering by reducing the intra-cluster distance and maximizing the inter-cluster distance thus improving the cluster quality.

Keywords
High dimensional data, hubness phenomenon, Kernel mapping , and K-nearest neighbor.
1. INTRODUCTION:
Clustering is an unsupervised process of grouping elements together. A cluster is a collection of data objects that are similar to one another within the same cluster and are dissimilar to the objects in other clusters. There are different clustering techniques which, such as hierarchical, partitional, and density-based and subspace [1]. Clustering methods can be used for detecting the underlying structure of the data distribution. Algorithms from the fourth group search for clusters in some lower dimensional projection of the original data, and have been generally preferred when dealing with data that are high dimensional [2], [3], [4], [5].

Partitional clustering methods start with an initial partition of the observation and optimize these partitions according to utility function or distance function. Hierarchical clustering methods works by grouping data objects into a tree of clusters. It can be further classified as either agglomerative or divisive, depending on whether the hierarchical decomposition is formed in a bottom-up or top-down fashion. Density-based clustering methods regard clusters as dense regions of objects in the data space that are separated by regions of low density. Subspace clustering methods search for groups of clusters within different subspaces of the same data set. This paper mainly focused on partitional clustering. To overcome the problems in partitional clustering methods on high dimensional data, a new algorithm which is based on combination of kernel mappings [7] and hubness phenomenon[6].

The rest of the paper is structured as follows. In the next section we present the related work on this research, Section 3 presents the discussion of Kernel Principal Component Analysis, while Section 4 discusses the hubness phenomenon, Section 5.describes the kernel hubness clustering. Section 6 presents the experiments we performed on the real world dataset.

2) RELATED WORK:

Applications of hubness have been investigated in other fields: classification, data reduction, image feature representation , text retrieval , collaborative filtering and music retrieval [4]. The emergence of hubs had been noted first in analyzing music collections. The researchers exposed some songs which were similar to many other songs, i.e., frequent neighbors. The hubness phenomenon has been observed in several application areas involving sound and image data and[7].hubness in the context of graph construction for semi-supervised learning was proposed.[8].
Hubness is a good measure of point centrality within a high-dimensional data cluster and that major hubs can be used effectively as cluster prototypes. Also, global hubness estimates are generally to be preferred with respect to the local ones. Was thoroughly discussed in [9]. In high dimensional data, it is difficult to estimate the separation of low density regions and high density regions due to data being very sparse [3],[5]. It is necessary to choose the proper neighborhood size, because both small and large values of k can cause problems for density based approaches.

Kernel k-means maps data points from the input space to the high dimensional feature space through a non-linear transformation [10]. The kernel based clustering minimizes the clustering error in feature space.

It is believed that the kernel k-means, which is used with the non-parametric histogram intersection kernel [6], is good for image clustering. In this paper we have proposed a new clustering algorithm which uses the concept of kernel and hubness phenomenon.

3. KERNEL PRINCIPAL COMPONENT ANALYSIS

The main purpose of principal component analysis (PCA) is the analysis of data to identify patterns that represent the data "well." The principal components can be understood as new axes of the dataset that maximize the variance along those axes (the eigenvectors of the covariance matrix). In other words, PCA aims to find the axes with maximum variances along which the data is most spread. A common application of PCA is to reduce the dimensions of the dataset with minimal loss of information.

The PCA approach is a linear projection technique that works well if the data is linearly separable. However, in the case of linearly inseparable data, a nonlinear technique is required if the task is to reduce the dimensionality of a dataset. Thus KPCA, an extension of principal component analysis (PCA) is used. This uses techniques of kernel method. Kernel PCA captures nonlinear structure in the data since a linear PCA performance in the feature space corresponds to a nonlinear projection in the original data space. It can extract up to n (number of samples) nonlinear principal component. Kernel PCA gives good reencoding of the data when it lies along a non-linear manifold. Following fig describes the steps of KPCA.
Fig 3.1: System Flow of Kernel Principal Component Analysis (KPCA)

4) HUBNESS PHENOMENON

Hubness is an act of high dimensional data to contain points that frequently occur in k-nearest neighbor lists of other points. Let $S \subset \mathbb{R}^d$ be a set of high dimensional data points and let $N_k(y)$ denote the number of k-occurrences of point $y \in S$, i.e., the number of times y occurs in k-nearest neighbor lists of other points from S. Hubness is an inherent property of high dimensional data which is related to distance concentration phenomenon [4]. The number of k-occurrences of point $y \in S$ is referred as hubness score in rest of the text. The frequently occurring data points in k-neighbor sets are referred as hubs and very rarely occurring points are referred as anti-hubs.

4.1 Appearance of Hubs

The concentration of distances enables to view unimodal high dimensional data lying on a hyper sphere centred at the data distribution mean. The variance of distances to the mean remains non-negligible for any countable number of dimensions, which indicates that some of the points still end up being closer to the data mean than other points [2]. The points closer to the mean tend to be closer to all other points in the dataset, for any dimensionality that observed. In high dimensional data, this act is made stronger. Such points will have a higher
probability of being included in k-nearest neighbor sets of other points in the dataset, which increases their ability, and they emerge as neighbor-hubs.

4.2 Relation of hub to centroid and medoid

In low dimensional data hubs in the clusters are far-off from the centroids, even out of average points. There is no relationship between cluster means and frequent neighbors in the low dimensional environment [2]. This fact may changes with the increase in dimensionality. The minimal distance from centroid to hub converges to minimal distance from centroid to medoid. This concept implies that some medoids are actually cluster hubs. As medoids the centroids are also closer to data hubs. This relationship brings us to get an idea that the points with high hubness scores are closer to centres of clustered sub regions of high dimensional space than other data points in the dataset. Hence these points can act as cluster representatives [4].

[5] KERNEL BASED HUBNESS CLUSTERING (KHC)

Hubness is viewed as a local centrality measure and is possible to use it for clustering high dimensional data in various ways. There are two types of hubness, namely global hubness and local hubness [2]. Local hubness can be defined as a restriction of global hubness on any given cluster of the current algorithm iteration. Local hubness score represents the number of k-occurrences of a point in k-nearest neighbor lists of elements within the same cluster. Global hubness represents the number of k-occurrences of a point in k-nearest neighbor lists of all elements of the dataset. This global hubness is used for determining the number of clusters automatically.

The high dimensional data contains more number of attributes, in which some attributes are more important for representing the data points. In order to identify the important attributes in the dataset, the Kernel Principal Component Analysis is used. The kernel principal components are used for defining the kernel function. By using the kernel function[6] , i.e., an appropriate non-linear mapping from the original input space to a higher dimensional feature space, clusters that are non-linearly separable in input space can be extracted. Kernel hubness clustering algorithm is described in Algorithm 1.
Algorithm 1 KHC

Input: Kernel matrix K, number of clusters k, initial clusters $C_1, C_2, C_3, \ldots, C_K$.

Output: Final clusters $C_1, C_2, C_3, \ldots, C_K$.

1: for all points x_n $n=1,2,\ldots,N$ do
2: for all clusters $C_i=1$ to k do
3: Calculate distance between hub and other points using kernel function
4: end for
5: find optimal distance
6: end for
7: for all clusters $C_i=1$ to k do
8: Update cluster C_i
9: end for
10: if converged then
11: return final clusters $C_1, C_2, C_3, \ldots, C_K$.
12: else
13: goto step 1
14: end if

6) RESULTS AND ANALYSIS:

![Figure 1](image.png)

Fig6.1: Shows cluster data using kernel hubness clustering algorithm
Real world data often contains noisy or erroneous values due to the nature of the data-collecting process. It can be assumed that hub-based algorithm will be more robust with respect to noise, since hubness-proportional search is driven mostly by the highest hubness element, not the outliers. For experiment UCI iris dataset was taken. The proposed algorithm is executed on this dataset and the cluster quality is measured. Fig. 6.2 shows final entropy vs. noise graph k-means score comparably well on iris dataset which is 4-dimensional.

Fig 6.2 : Shows cluster quality measures with rising noise levels.

References: