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DIGITAL IMAGE 

RESTORATION BY USING THE 

JOINT STATISTICAL MODEL 

 
ABSTRACT: This paper presents a completely unique strategy for accurate image restoration by 

characterizing each native smoothness and nonlocal self-similarity of natural pictures during a unified statistical 

manner. The most contributions area unit three-fold. First, from the angle of image statistics, a joint statistical 

modeling (JSM) in an accommodative hybrid space-transform domain is established, that offers a strong} 

mechanism of mixing native smoothness and nonlocal self-similarity at the same time to make sure a lot of 

reliable and robust estimation. Second, a replacement variety of minimization purposeful for finding the image 

inverse drawback is developed using JSM underneath a regularization-based framework. Finally, so as to form 

JSM tractable and robust, a replacement Split Bregman-based algorithmic program is developed to 

expeditiously solve the on top of severely underdetermined inverse drawback associated with theoretical proof 

of convergence. Intensive experiments on image inpainting, image deblurring, and mixed mathematician and 

salt-and pepper noise removal applications verify the effectiveness of the proposed algorithmic program 

 

 

1.1 Introduction 

 
            Images are produced to record or display useful information. Due to imperfections in the imaging and 

capturing process, however, the recorded image invariably represents a degraded version of the original scene. 

The undoing of these imperfections is crucial to many of the subsequent image processing tasks. There exists a 

wide range of different degradations that need to be taken into account, covering for instance noise, geometrical 

degradations (pin cushion distortion), illumination and color imperfections, inpainting, and blur. 

             As a fundamental problem in the field of image processing, image restoration has been extensively 
studied. Image Restoration is the operation of taking a corrupted/noisy image and estimating the clean original 

image. Corruption may come in many forms such as motion blur, noise, and camera misfocus. It means that to 
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reconstruct the original high quality image f(x,y) from its degraded observed version g(x,y) it can be generally 

formulated as  

                                          g(x,y)=H[f(x,y)]+n(x,y) 

where H is a matrix representing a non invertible linear degradation operator, n is a usually additive Gaussian 

white noise. When H is identity, the problem becomes image denoising. When H is a blur operator the problem 

becomes image deblurring. when H is a mask, that is H is a diagonal matrix whose diagonal entries are either 1 

or 0 keeping or killing the corresponding pixels, the problem becomes image inpainting. In this project am focus 

on image inpainting ,image deblurring and image denoising.  

1.2 Aim of the project  

The main aim of this project is to produce original high quality image from high-fidelity image 

restoration by characterizing both local smoothness and nonlocal self-similarity of natural images in a unified 

statistical manner. 

 

1.3 Methodology 
The main contributions are three-fold. First, from the perspective of image statistics, a joint statistical 

modeling (JSM) in an adaptive hybrid space-transform domain is established, which offers a powerful 

mechanism of combining local smoothness and nonlocal self-similarity simultaneously to ensure a more reliable 

and robust estimation. Second, a new form of minimization functional for solving the image inverse problem is 

formulated using JSM under a regularization-based framework. Finally, in order to make JSM tractable and 

robust, a new Split Bregman-based algorithm is developed to efficiently solve the above severely 

underdetermined inverse problem associated with theoretical proof of convergence. These two properties from 

the perspective of image statistics and propose a JSM for high fidelity of image restoration in an adaptive hybrid 

space transform domain. Specifically, JSM is established by merging two complementary models: 1) local 

statistical modeling (LSM) and 2) nonlocal statistical modeling (NLSM).  

 

2. LITERATURE REVIEW 

2.1 Introduction      

            One of the related areas that has seen a recent surge of interest is the area of image processing. With the 
rise of digital cameras, scanners, and digital imagery, it is more important than ever to have good methods for 

processing this imagery. The digital images could be distorted or have noise which needs to be removed. Some 

researchers are interested in recovering important features contained in the image. For example, they may want 

to recover the location of buildings in satellite imagery or identify objects that are blocking a path for a mobile 

robot. Given that many images require massive amounts of storage space, we need to consider methods by 

which to compress the imagery in order to save on storage costs. 

A good example of the problems encountered with digital imagery is given by NASA’s Deep Impact 

mission spacecraft. This satellite was sent to study the innards of a comet, but one of the instrument cameras 

was not properly calibrated before it was sent into space. The result was all the imagery returned to earth was 

blurry and all the images would have to be corrected after the data was returned. 

             In image restoration, a distorted image is restored to its’ original form. This distortion is typically 

caused by noise in transmission, lens calibration, motion of the camera, or age of the original source of the 
image. 

 

2.2 Existing Image Restoration Algorithms 

            It has been widely recognized that image prior knowledge plays a critical role in the performance of 

image restoration algorithms. Therefore, designing effective regularization terms to reflect the image priors is at 

the core of image restoration. 

            Classical regularization terms utilize local structural patterns and are built on the assumption that images 

are locally smooth except at the edges. Some representative works in the literature are the total variation (TV), 

half quadrature formulation and Mumford-Shah (MS) models. 

 

 

2.2.1 Total Variation (TV)  
            Total variation, it is a regularization  process, most often used in digital image processing, that has 

applications in noise removal. It is based on the principle that signals with excessive and possibly spurious detail 

have high total variation, that is, the integral of the absolute gradient of the signal is high. According to this 

principle, reducing the total variation of the signal subject to it being a close match to the original signal, 

https://en.wikipedia.org/wiki/Image_processing
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removes unwanted detail whilst preserving important details such as edges. The concept was pioneered by 

Rudin et al. in 1992. 

            This noise removal technique has advantages over simple techniques such as linear smoothing or median 

filtering which reduce noise but at the same time smooth away edges to a greater or lesser degree. By contrast, 

total variation denoising is remarkably effective at simultaneously preserving edges while smoothing away noise 

in flat regions, even at low signal-to-noise ratios. 

            The derivation of a simple algorithm for signal denoising (filtering) based on total variation (TV). Total 

variation based filtering was introduced by Rudin, Osher, and Fatemi. TV denoising is an effective filtering 

method for recovering piecewise-constant signals. Many algorithms have been proposed to implement total 

variation filtering. The one described in these notes is by Chambolle. Although the algorithm can be derived in 

several different ways, the derivation presented here is based on descriptions given. The derivation is based on 

the min-max property and the majorization-minimization procedure. Total variation is often used for image 

filtering and restoration, however, to simplify the presentation of the TV filtering algorithm these notes 

concentrate on one-dimensional signal filtering only. In addition, the algorithm described here may converge 

slowly for some problems. 

            Total variation can be seen as a non-negative real-valued functional defined on the space of real-valued 

functions (for the case of functions of one variable) or on the space of integrable functions (for the case of 

functions of several variables). As a functional, total variation finds applications in several branches of 

mathematics and engineering, like optimal control, numerical analysis, and calculus of variations, where the 

solution to a certain problem has to minimize its value. 

2.2.2 Mumford-Shah (MS) model 

            The Mumford–Shah model  is a functional that is used to establish an optimality criterion for segmenting 

an image into sub-regions. An image is modeled as a piecewise-smooth function. The functional penalizes the 

distance between the model and the input image, the lack of smoothness of the model within the sub-regions, 

and the length of the boundaries of the sub-regions. By minimizing the functional one may compute the best 

image segmentation. Image segmentation is a hot topic of research given its applicability as a pre-processing 

technique in many image understanding applications. This Mumford–Shah model describes the image 

segmentation. The mathematical framework and the main features of the model are sketched along with the 

procedure leading from the analytical expression of the model to its practical implementation. 

            The Mumford–Shah functional consists of three weighted terms, the interaction of which assures that the 

three conditions of adherence to the data, smoothing, and discontinuity detection are met at once. The solution 

of the Mumford–Shah variational problem is twofold. On one side, a smooth approximation of the data is built 

so that the data discontinuities are explicitly preserved from being smoothed. On the other side, the model 

directly produces an image of the detected discontinuities.  

            An open source software has been developed and used to perform a set of tests on synthetic and real 

images to demonstrate the feasibility and the effectiveness of the implementation and to give practical evidence 

of some theoretically foreseen properties of the model. The effect of varying the values of the weight parameters 

appearing in the Mumford–Shah model has been investigated. In this work, a maximum-likelihood based 

classifier has been concatenated to the Mumford–Shah model for the processing of a high-resolution photo. The 

classified image has been compared against the output of the same classifier applied directly to the original 

photo. 

2.2.3 Half quadrature formulation 

            Half quadrature formulation is a method for numerical integration, or "quadrature", that are based on an 

expansion of the integrand in terms of Chebyshev polynomials. Equivalently, they employ a change of variables 

x = \cos \theta and use a discrete cosine transform (DCT) approximation for the cosine series. Besides having 

fast-converging accuracy comparable to Gaussian quadrature rules, Clenshaw–Curtis quadrature naturally leads 

to nested quadrature rules (where different accuracy orders share points), which is important for both adaptive 

quadrature and multidimensional quadrature (cubature). 

            Briefly, the function f(x) to be integrated is evaluated at the N extrema or roots of a Chebyshev 

polynomial and these values are used to construct a polynomial approximation for the function. This polynomial 

is then integrated exactly. In practice, the integration weights for the value of the function at each node are 

https://en.wikipedia.org/wiki/Gaussian_blur
https://en.wikipedia.org/wiki/Median_filter
https://en.wikipedia.org/wiki/Median_filter
https://en.wikipedia.org/wiki/Functional_(mathematics)
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precomputed, and this computation can be performed in O(N \log N) time by means of fast Fourier transform-

related algorithms for the DCT 

            The classic method of Gaussian quadrature evaluates the integrand at N+1 points and is constructed to 

exactly integrate polynomials up to degree 2N+1. In contrast, Clenshaw–Curtis quadrature, above, evaluates the 

integrand at N+1 points and exactly integrates polynomials only up to degree N. It may seem, therefore, that 

Clenshaw–Curtis is intrinsically worse than Gaussian quadrature, but in reality this does not seem to be the case. 

In practice, several authors have observed that Clenshaw–Curtis can have accuracy comparable to that 

of Gaussian quadrature for the same number of points. This is possible because most numeric integrands are not 

polynomials (especially since polynomials can be integrated analytically), and approximation of many functions 

in terms of Chebyshev polynomials converges rapidly. In fact, recent theoretical results[7] argue that both 
Gaussian and Clenshaw–Curtis quadrature have error bounded by O([2N]^{-k}/k) for a k-times differentiable 

integrand. 

  

3. Proposed Joint Statistical Modeling in a Space-Transform Domain 

 
            The ill-posed nature of image inverse problems, prior knowledge about natural images is usually 
employed, namely image properties, which essentially play a key role in achieving high-quality images two 

types of popular image properties are considered, namely local smoothness and nonlocal self-similarity, as 

illustrated by below figure. 

 

 
Fig 3.1  Illustrations for local smoothness and nonlocal self-similarity of natural image 

 

            The former type describes the piecewise smoothness within local region, as shown by circular regions, 

while the latter one depicts the repetitiveness of the textures or structures in globally positioned image patches, 

as shown by block regions with the same color. The challenge is how to characterize and formulate these two 

image properties mathematically. Note that different formulations of these two properties will lead to different 

results. Characterize these two properties from the perspective of image statistics and propose a JSM for high 
fidelity of image restoration in an adaptive hybrid space-transform domain.  

             Specifically, JSM is established by merging two complementary models: 

 1) local statistical modeling (LSM) in 2D space domain and  

2) nonlocal statistical modeling (NLSM) in 3D transform domain, that is 

 
where τ, λ are regularization parameters, which control the tradeoff between two competing statistical terms. Ψ 
LSM corresponds to the above local smoothness prior and keeps image local consistency, suppressing noise 

effectively, while Ψ NLSM corresponds to the above nonlocal self-similarity prior and maintains image nonlocal 

consistency, retaining the sharpness and edges effectually. More details on how to design JSM to characterize 

the above two properties will be provided below. 

 

3.2.Local Statistical Modeling for Smoothness in Space Domain 

            Local smoothness describes the closeness of neighboring pixels in 2D space domain of images, which 

means the intensities of the neighboring pixels are quite similar. To characterize the smoothness of images, there 

exist many models. Here, we mathematically formulate a local statistical modeling for smoothness in 2D space 
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domain. From the view of statistics, a natural image is preferred when its responses for a set of high passing 

filters are as small as possible which intuitively  implies that images are locally smooth and their derivatives are 

close to zero. 

            In practice, the widely used filters are vertical and horizontal finite difference operators, denoted by Dv 

= [1 − 1]T and Dh = [1 − 1], respectively. Fig. 4.2 shows the gradient picture in horizontal direction of image 

Lena and its histogram. It is obvious to see that the distribution is very sharp and most pixels values are near 
zero. In literatures, the marginal statistics of outputs of the above two filters are usually modeled by generalized 

Gaussian distribution (GGD). choose Laplacian distribution to model the marginal distributions of gradients of 

natural images by making a tradeoff between modeling the image statistics accurately and being able to solve 

the ensuing optimization problem efficiently. Thus, let D = [Dv;Dh] and set v to be to obtain LSM in space 

domain at pixel level, with corresponding regularization term Ψ  LSM denoted by 

 
which clearly indicates that the formulation is convex and facilitates the theoretical analysis. 

 

 
Fig. 3.2  Illustrations for local statistical modeling for smoothness in the space domain at pixel level.  

(a) Gradient picture in horizontal direction of image Lena. (b) Distribution of horizontal gradient picture of 

Lena, i.e., histogram of (a). 
 

            Note that Ψ LSM has the same expression as anisotropic TV defined and can be regarded as a statistical 

interpretation of anisotropic TV. It is important to emphasize that local statistical modeling is only used for 

characterizing the property of image smoothness. The regularization term has the advantages of convex 

optimization and low computational complexity. There is no need to design a very complex regularization term, 

since the task of retaining the sharp edges and recovering the fine textures will be accomplished by the 

following nonlocal statistical modeling. 

4.1  Nonlocal Statistical Modeling for Self-Similarity in Transform Domain 

            Besides local smoothness, nonlocal self-similarity is another significant property of natural images. It 

characterizes the repetitiveness of the textures or structures embodied by natural images within nonlocal area, 

which can be used for retaining the sharpness and edges effectually to maintain image nonlocal consistency. 

However, the traditional nonlocal regularization terms as mentioned above essentially adopt a weighted manner 

to characterize self-similarity by introducing nonlocal graph according to the degree of similarity among similar 

blocks, which often fail to recover finer image textures and more accurate structures. 

            Recently, quite impressive results have been achieved in image and video denoising by conducting the 

operation of transforming a 3D array of similar patches and shrinking the coefficients It is worth emphasizing 

that Dabov did excellent work in the image restoration field, especially their famous BM3D methods for image 

denoising and deblurring applications, which have achieved great success. Our proposed statistical modeling for 

self similarity is inspired by their success and significantly depends on their work. In this paper, we 

mathematically characterize the nonlocal self-similarity for natural images by means of the distributions of the 

transform coefficients, which are achieved by transforming the 3D array generated by stacking similar image 

patches. Accordingly, this type of model can be named as NLSM for self-similarity in 3D transform domain. 

            More specifically, as illustrated in Fig. 4.3 the strict description on the proposed NLSM for self-

similarity in transform domain can be obtained in the following five steps. First, divide the image u with size N 

into n overlapped blocks ui of size bs, i = 1, 2, ..., n. Second, for each block in red denoted by ui, we search c 

blocks (such as nine in Fig. 3) that are most similar to it within the blue search window. Instead of using a 

tunable threshold to choose similar blocks in for de-noising, our choice with a fixed number is not only simple 

but also robust to the similarity criterion. Thus, for simplicity, the criterion for calculating similarity between 

different blocks is Euclidean distance. Moreover, it enables solving the sub-problem associated with NLSM 
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quite efficient (see Theorem 2). Define Sui the set including the c best matched blocks to ui in the searching 

window with size of L × L, that is, Sui = {Sui⊗1, Sui⊗2, ..., Sui⊗c}. Third, as to each Sui , stack the c blocks 

belonging to Sui into a 3D array, which is denoted by Zui . Fourth, denote T 3D as the operator of an orthogonal 

3D transform and T 3D(Zui ) as the transform coefficients for Zui . Let  u be the column vector of all the 

transform coefficients of image u with size K = bs ∗ c ∗ n built from all the T 3D(Zui ) arranged in the 
lexicographic order.             Note that the orthogonality of 3D transform is momentous in solving NLSM, which 

will be discussed in the next section. Finally, we analyze the histogram of the transform coefficients, as shown 

in Fig. 3, which statistically demonstrates that the histogram is quite sharp, and the vast majority of coefficients 

are concentrated near the zero value.  

This is similar to the previous local modeling of images and is also very suitable to be characterized by 

GGD. Analogous to LSM in space domain, by making a tradeoff between accurate modeling and efficient 

solving, in this paper the distribution of Θu is modeled by Laplacian function. 

 

Fig. 4.1  Illustrations for nonlocal statistical modeling for self-similarity in 3D transform domain at block level. 

 

            Therefore, the mathematical formulation of nonlocal statistical modeling for self-similarity in 3D 

transform domain is written as 

 
Accordingly, the inverse operator Ω NLSM corresponding to ΨNLSM can be defined in the following 

procedures. After obtaining Θu, split it into n 3D arrays of 3D transform coefficients, which are then inverted to 

generate estimates for each block in the 3D array. The block-wise estimates are returned to their original 

positions and the final image estimate is achieved by averaging all of the above block-wise estimates. 

            The difference between the proposed NLSM and BM3D method mainly has three aspects. First, we 

mathematically characterize the nonlocal self-similarity for natural images by means of the distributions of the 

transform coefficients, which are achieved by transforming the 3D array generated by stacking similar image 

blocks. Second, for each block, we utilize a fixed number of blocks that are most similar to it within  the search 

window to construct its 3D array. Nonetheless, in the BM3D works many tunable thresholds to choose similar 
blocks are exploited, which is a bit complicated. Our choice with a fixed number is not only simple but also 

robust to the similarity criterion. Moreover, the fixed size of each 3D array enables solving the subproblem 

associated with NLSM quite efficient . Third, the proposed NLSM is more general and can be directly 

incorporated into the regularization framework for image inverse problems, such as image in-painting, image 

de-blurring, and mixed Gaussian plus impulse noise removal, which will be provided in the experimental 

section.  

 

            Furthermore, a Split Bregman-based iterative algorithm and a theorem are developed to solving the 

NLSM regularized problem effectively and efficiently. Here, we also give a visual comparison between the 

proposed NLSM and two traditional nonlocal regularization terms. Fig. 4.4 provides visual results of image 

restoration from partial random samples for crops of image Barbara in the case of ratio = 20%. Fig. 4.4(a) is the 

corresponding degraded image with only 20% random samples available. Fig. 4.4(b) is the reconstruction result 
achieved only by LSM. It looks good in smooth regions, but loses sharp edges and accurate textures. Fig. 4.4(c) 

is the reconstruction result achieved by the local statistical modeling and NLM-based regularization term 

together, denoted by LSM+NLM, where the nonlocal regularization term  Fig. 4.4(d) provides the restoration 

result by nonlocal total variation (NL/TV),  It is obvious that the reconstruction result with sharper edges and 

more image details is obtained by incorporation nonlocal graph However, accurate image textures still cannot be 

recovered and the results are not very clear. Fig. 4.4(e) shows the restoration result by the proposed LSM plus 

NLSM, i.e., the proposed JSM. 
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5. Experimental Results 

 

 

 

 

 

 

                                                        

 

Conclusions and Future Scope 

The  experimental results are presented to evaluate the performance of the proposed algorithm, which 

is compared with many existing methods. We apply our algorithm to the applications of image inpainting, image 

deblurring, and mixed Gaussian plus salt-and-pepper noise removal. To evaluate the quality of image 

reconstruction, in addition to PSNR, which is used to evaluate the objective image quality. 

  A novel algorithm for high-quality image restoration using the joint statistical modeling in a space-

transform domain is proposed, which efficiently characterizes the intrinsic properties of local smoothness and 

nonlocal self-similarity of natural images from the perspective of statistics at the same time. 
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 Future work includes the investigation of the statistics for natural images at multiple scales and 

orientations and the extensions on a variety of applications, such as image deblurring with mixed Gaussian and 

impulse noise and video restoration tasks. 

 

 

REFERENCES 
 

[1] M. R. Banham and A. K. Katsaggelos, “Digital image restoration,” IEEE Trans. Signal Process. 
Mag., vol. 14, no. 2, pp. 24–41, Mar. 1997. 

[2] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” 

Phys. D., vol. 60, nos. 1–4, pp. 259–268, Nov. 1992. 

[3] A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imag. 
Vis., vol. 20, nos. 1–2, pp. 89–97, Jan./Mar. 2004. 

[4] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3D transform-

domain collaborative filtering,” IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 
2007. 

[5] Y. Chen and K. Liu, “Image denoising games,” IEEE Trans. Circuits Syst. Video Technol., vol. 

23, no. 10, pp. 1704–1716, Oct. 2013.  
[6] J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma, and W. Gao, “Image compressive sensing recovery 

via collaborative sparsity,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 3, pp. 380–391, Sep. 

2012. 

[7] H. Xu, G. Zhai, and X. Yang, “Single image super-resolution with detail enhancement based on 
local fractal analysis of gradient,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 10, pp. 

1740–1754, Oct. 2013. 

[8] X. Zhang, R. Xiong, X. Fan, S. Ma, and W. Gao, “Compression artifact reduction by overlapped-
block transform coefficient estimation with block similarity,” IEEE Trans. Image Process., vol. 22, 

no. 12 pp. 4613–4626, Dec. 2013. 

[9] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and superresolution by adaptive sparse 
domain selection and adaptive regularization,” IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–

1857, Jul. 2011. 

[10] L. Wang, S. Xiang, G. Meng, H. Wu, and C. Pan, “Edge-directed single-image super-resolution 

via adaptive gradient magnitude selfinterpolation,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, 
no. 8, pp. 1289–1299, Aug. 2013. 

[11] J. Dai, O. Au, L. Fang, C. Pang, F. Zou, and J. Li, “Multichannel nonlocal means fusion for color 

image denoising,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 11, pp. 1873–1886, Nov. 
2013. 

[12] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shape-adaptive DCT for high-quality 

denoising and deblocking of grayscale and color images,” IEEE Trans. Image Process., vol. 16, no. 5, 

pp. 1395–1411, May 2007. 
[13] J. Bioucas-Dias and M. Figueiredo, “A new TwIST: Two-step iterative shrinkage/thresholding 

algorithms for image restoration,” IEEE Trans. Image Process., vol. 16, no. 12, pp. 2992–3004, Dec. 

2007. 
[14] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image 

denoising and deblurring problems,” IEEE Trans. Image Process., vol. 18, no. 11, pp. 2419–2434, 

Nov. 2009. 
[15] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “Fast image recovery using variable splitting 

and constrained optimization,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2345–2356, Sep. 2010. 

[16] J. Zhang, D. Zhao, C. Zhao, R. Xiong, S. Ma, and W. Gao, “Compressed sensing recovery via 

collaborative sparsity,” in Proc. IEEE Data Compression Conf., Apr. 2012, pp. 287–296. 
[17] J. Zhang, D. Zhao, F. Jiang, and W. Gao, “Structural group sparse representation for image 

compressive sensing recovery,” in Proc. IEEE Data Compression Conf., Mar. 2013, pp. 331–340. 

[18] D. Geman and G. Reynolds, “Constrained restoration and the recovery of discontinuities,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 14, no. 3, pp. 367–383, Mar. 1992. 

[19] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,” in Proc. Int. 

Conf. Comput. Vision, vol. 2. 1999, pp. 1022–1038. 



Damera Divya Rani et al, International Journal of Computer Science and Mobile Computing, Vol.5 Issue.7, July- 2016, pg. 225-233 

© 2016, IJCSMC All Rights Reserved                                                                                                        233 

[20] D. Mumford and J. Shah, “Optimal approximation by piecewise smooth functions and associated 

variational problems,” Comm. Pure Appl. Math., vol. 42, no. 5, pp. 577–685, Jul. 1989. 
[21] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration by sparse 3D transform-

domain collaborative filtering,” in Proc. SPIE, 2008, pp. 1–12. 

[22] G. Zhai and X. Yang, “Image reconstruction from random samples with multiscale hybrid 

parametric and nonparametric modeling,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 11, 
pp. 1554–1563, Nov. 2012. 

[23] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper- Laplacian priors,” in Proc. 

NIPS, vol. 22. 2009, pp. 1–9.  
[24] A. Buades, B. Coll, and J. M. Morel, “A non-local algorithm for image denoising,” in Proc. Int. 

Conf. Comput. Vision Pattern Recognit., 2005, pp. 60–65. 

[25] G. Gilboa and S. Osher, “Nonlocal operators with applications to image processing,” Univ. 
California at Los Angles, Los Angles, CA, USA, CAM Rep. 07-23, Jul. 2007. 

[26] www.google.com 

 
 

 

 

 

 


