Available Online at www.ijcsme.com

I nter national Jour nal of Computer Science and M obile Computing

A Monthly Journal of Computer Science and | nformation Technology

ISSN 2320-088X
IJCSMC, Vol. 2, Issue. 5, May 2013, pg.26267

SURVEY ARTICLE

A Survey on Software Development Life
Cycle M odels

T Bhuvaneswari’, S Prabaharan®
PG StudentDepartment of Computer Science and Engineering, YNBgineering College, India
pssociate Professor, Department of Computer SciendeEngineering, VMKV Engineering College, India

! basweety4@gmail.com

Abstract— This study deals with a vital and impontathing in computer software development. It is
concerned with the software management processes #xamine the area of software development through
the development models, which are known as softwdegelopment life cycle. It represents the deveiept
models namely Waterfall model, Iterative model, Waped model, Spiral model, Extreme programming,
Iterative and Incremental Method, Rapid prototypingnodel, The Chaos Model, Adaptive Software
Development (ASD), The Agile Software Process (ASEjystal, Dynamic System Development Method
(DSDM), Feature Driven Development (FDD), Ration&lnified Process (RUP), SCRUM, Wisdom, The Big
Bang Model. These models have advantages and dsaihges as well. Therefore, the main objective lubt
study is to represent different models of softwatevelopment and make comparison between them tavsho
the features and defects of each model.

Key Terms: - Software Engineering; Software Devetopnt; Software Process Model, SDLC; Software Life
Cycle Model

. INTRODUCTION

No one can deny the importance of computer in iéeir éspecially during the present time. In factnputer
has become indispensable in today's life as iséxlun many fields of life such as industry, medkcicommerce,
education and even agriculture. It has become aoritant element in the industry and technologydvamced
as well as developing countries. Now-a-days, omgiuns become more dependent on computer inwueks
as a result of computer technology. Computers densd a time-saving device and its progress helps i
executing complex, long, repeated processes inra sfeort time with a high speed. In addition tongsi
computer for work, people use it for fun and emii@rnent. Noticeably, the number of companies thatlyce
software programs for the purpose of facilitatingrks of offices, administrations, banks, etc., dgrihe
previous four decades. Moreover, the aim of soweargineering is to construct programs of highigual

Il. SOFTWARE PROCESSMODELS
A Software Development Life Cycle (SDLC) is a constion imposed on the development of a software
product. It is frequently considered a subset steays development life cycle. There are a numbenaiels
for such processes, each describing approachesatme of tasks or activities that take place dytive process.
This section represents the following models ofvgafe development and makes comparison between tinem
show the features and defects of each model

* Waterfall model.
* |terative model.

© 2013, IJICSMC All Rights Reserved 262

T Bhuvaneswarét al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 5, May- 2013, pg. 262-267

e V-shaped model.

e Spiral model.

e Extreme programming.

e Incremental Method

¢ Rapid prototyping model

e The Chaos Model

e Adaptive Software Development (ASD)
e The Agile Software Process (ASP)

e Crystal Model

¢ Dynamic System Devel opment Method (DSDM)
e Feature Driven Development (FDD)

« Rational Unified Process (RUP)

« SCRUM

e Wisdom

» TheBig Bang Model.

A. The Waterfall Model

The waterfall model [1] is the classical model oftware engineering. This model is one of the didesdels
and is widely used in government projects and inymaajor companies. As this model emphasizes pheimi
early stages, it ensures design flaws before tlesgldp. In addition, its intensive document anchplag make
it work well for projects in which quality contred a major concerriThe model begins with establishing system
requirements and software requirements and corgtinith architectural design, detailed design, cggdiasting,
and maintenancéAdvantages. Easy to understand and implement. It reinforcesdgiabits such as define-
before-design, design-before-code. It identifiedivdeables and milestones, Document driven, Publish
documentation standards, Works well on mature medand weak teamfisadvantages. Idealized doesn’t
match reality well. It doesn’t reflect iterative tnee of exploratory development. It is unrealistic expect
accurate requirements so early in project. Softuatelivered late in project, delays discovergefious errors.
It is difficult to integrate risk management. Itégpensive to make changes to documents. For $eaaiis and
projects, the cost is more and significant admiatste overhead.

B. Iterative Model

An iterative life cycle model [3] does not attenmptstart with a full specification of requiremenisstead,
development begins by specifying and implementirgj part of the software, which can then be revikvwe
order to identify further requirements. This pracesthen repeated, producing a new version ofdifisvare for
each cycle of the modeAdvantages: In iterative model we are building and improvimg fproduct step by step,
we can track the defects at early stages. Thigdawbie downward flow of the defects. In iterativedal we can
get the reliable user feedback. In iterative maegs time is spent on documenting and more tingévisn for
designing. Disadvantages: Each phase of iteration is rigid with no overla@gstly system architecture or
design issues may arise because not all requirsraeatgathered up front for the entire life cycle.

C. V-Shaped Model

Like waterfall model, the V-Shaped life cycle [8]a sequential path of execution of processes. Baake
must be completed before the next phase beginsingiés emphasized in this model more than the elte
model. The testing procedures are developed aathgei life cycle before any coding is done, duragh of the
phases preceding implementation. Requirements hbgitife cycle model just like the waterfall modBkfore
development is started, a system test plan isenledhe test plan focuses on meeting the funciiyrepecified
in requirements gathering. The high-level desigrasgh focuses on system architecture and design. An
integration test plan is created in this phaserdento test the pieces of the software systemyatm work
together.Advantages. Simple and easy to use. Each phase has specifie@glles. Higher chance of success
over the waterfall model due to the early developinté test plans during the life cycle. Works wielt small
projects where requirements are easily understboshdvantages: Very rigid like the waterfall model. Little
flexibility and adjusting scope is difficult and gensive. Software is developed during the impleatéort
phase, so no early prototypes of the software aodused. This model does not provide a clear path f
problems.

© 2013, IJICSMC All Rights Reserved 263

T Bhuvaneswarét al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 5, May- 2013, pg. 262-267

D. Spiral model

The spiral model [4] is similar to the incrementabdel, with more emphasis placed on risk analy&ie
spiral model has four phases: Planning, Risk AnglyEngineering and Evaluation. A software project
repeatedly passes through these phases in itesgtialted Spirals in this model). The baselineapstarting in
the planning phase, requirement is gathered akdgiassessed. Each subsequent spiral builds obagedine
spiral. Requirements are gathered during the phgnphase. In the risk analysis phase, a procassdisrtaken
to identify risk and alternate solutions. A profetyis produced at the end of the risk analysisetfasftware is
produced in the engineering phase, along withrigsti the end of the phase. The evaluation phésesathe
customer to evaluate the output of the projectata dbefore the project continues to the next spinahe spiral
model, the angular component represents progressthee radius of the spiral represents céstvantages:
High amount of risk analysis. Good for large andsitn-critical projects. Software is produced eanlyhe
software life cycle.Disadvantages. Can be a costly model to use. Risk analysis requiighly specific
expertise. Project’s success is highly dependenthenrisk analysis phase. It doesn’'t work well fonaller
projects.

E. Extreme programming.

An approach to development [5] based on the dewatop and delivery of very small increments of
functionality. It relies on constant code improvermaiser involvement in the development team andvpae
programming. It can be difficult to keep the inwref customers who are involved in the procesanTe
members may be unsuited to the intense involvethetcharacterizes agile methods. Prioritizing gesncan
be difficult where there are multiple stakeholdéigintaining simplicity requires extra work. Cordta may be
a problem as with other approaches to iterativeeligvnent.Advantages. Lightweight methods suit small-
medium size projects. Produces good team cohesidnemnphasises final product and lterative. Tesedbas
approach to requirements and quality assuraDcsdvantages: Difficult to scale up to large projects where
documentation is essential and needs experiencaldlihdf not to degenerate into code-and-fix. Prailgming
pairs is costly.

F. Incremental Method

It is developed to overcome the weaknesses of #terfall model. It starts with an initial planniagd ends
with deployment with the cyclic interactions in Wween. The basic idea behind this method is to dgval
system through repeated cycles (iterative) andmallgr portions at a time (incremental), allowingfteare
developers to take advantage of what was learngdgldevelopment of earlier parts or versions &f system
[6]. Advantages:. Produces business value early in the developmientyicle- Better use of scarce resources
through proper increment definition. Can accommedsbtme change requests between increments. More
focused on customer value than the linear appr@acBheblems can be detected earlidrsadvantages:
Requires heavy documentation. Follows a definedb@rrocesses, defines increments based on funatidn
feature dependencies. It requires more customeshiement than the linear approaches. Partitionimg t
functions and features might be problematic. Iraégn between iteration can be an issue if thias
considered during the development.

G. Rapid prototyping model or Rapid Application Development (RAD)

A rapid prototype [7] is a working model that iswftionally equivalent to a subset of the producc&use
the working prototype has been validated througéraction with the client, the resulting specifioatwill be
correct. Verification is needed in specificatiofgrming, and design. In implementation and intégrattesting
is needed. An essential aspect of a rapid prototypn the wordapid. We can combine waterfall and rapid
prototyping, by using rapid prototyping to find dilie client's requirementé&dvantages. RAD reduces the
development time and reusability of components belppeed up development. All functions are modzsar
so it is easy to work wittDisadvantages: For large projects RAD require highly skilled erggns in the team.
Both ends Customer and developer should be conuritteceomplete the system in a much abbreviated time
frame. If commitment is lacking RAD will fail. RAE based on Object oriented approach and if iiffcdlt to
modularize the project the RAD may not work well.

H. The Chaos Mode

The Chaos model [8] combines a linear problem sglitbop with fractals to describe the complexity of
software development. The linear problem-solvingpldnvolves four different stages: problem definiti
technical development, solution integration, aratust quo. Fractals describe the structure betwéésreht
parts of a project. The Chaos model differs frotheotmodels in that it imposes little organizatiom the
development process; rather, it allows many orgdiuns to evolve. This allows the Chaos model tolyam
many complex situations. The structure of a singpteblem is different from the structure of a mooemplex

© 2013, IJICSMC All Rights Reserved 264

T Bhuvaneswarét al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 5, May- 2013, pg. 262-267

problem. In general, we break complex problems &itapler sub problems. We use this reductions ambroo
deal with problems that are too large to handlemtise. Yet, stating that the recursive structar®o simple.

I. Adaptive Software Development (ASD)

Adaptive Software Development (ASD) as a framewbidm which to address the rapid pace of many
software projects [9]. ASD is grounded in the sceéerof complex adaptive systems theory and has three
interwoven components: the Adaptive Conceptual Matte Adaptive Development Model, and the Adaptive
Management Model. In contrast to the typical watérfplan, build, implement) or the iterative (plaouild,
revise) life cycles, the adaptive development lifgcle (speculate, collaborate, learn) acknowledties
existence of uncertainty, change and does not ptttsrmanage software development using precisgigiien
and rigid control strategies.

J. The Agile Software Process (ASP)

The Agile Software Process (ASP) was first proposethe 1998 [10] unlike traditional software prsse
models based on volume, the ASP is time-based andklg delivers software products. The model
accomplishes this by integrating lightweight presess modular process structures, and incrementhl an
iterative process delivery. The ASP methodologesfffive major contributions to the field. Theselude: A
new process model with a time-based inaction masham software process model that provides evonhati
delivery. A software process architecture that greges concurrent and asynchronous processes. &SP i
complex process and is therefore more vulnerabtistwption than are other lightweight and tradiibSDLC
methodologies. Benefits of the ASP process arealidity to efficiently manage large-scale software
development efforts. Evidence of this is the 75est reduction in development cycle time realizgd-hjitsu
when ASP was employed to manage a major commuaicatftware project.

K. Crystal Model

The Crystal family of lightweight SDLC methodologiés the creation of Alistair Cockburn [17]. Crylsig
comprised of more than one methodology becauseoakiflirn’s belief that differing project types requi
differing methodologies. Project types are clasdifalong two lines: the number of people on thesttgpment
team and the amount of risk (e.g. a 30 person qirdfet is at risk to lose discretionary money ieggia
different methodology than a four person life-cali project).Crystal methodologies are divided intbours-
coded bands. “Clear” Crystal is the smallest agttéist. “Yellow”, “Orange”, “Red”, “Maroon”, “Blue; and
“Violet” follow for use with larger groups using mecomplex methodologies.

L. Dynamic System Devel opment Method (DSDM)

The Dynamic Systems Development Method (DSDM) idramework [12] used to control software
development projects with short timelines. It wasvaloped in 1994 by a consortium formed by a group
companies in Great Britain. The methodology begiitk a feasibility study and business study to detee if
DSDM is appropriate. The rest of the process cthsiEthree interwoven cycles. These are functionatiel
iteration, design and build iteration, and impletagion. The underlying principles of DSDM includeduent
deliveries, active user communication, empowerectidpment teams, and testing in all phases of gegro
DSDM is different than traditional approaches imtthhequirements are not fixed. Project requiremamées
allowed to change based upon a fixed timeline axedf project resources. This approach requiresearcl
prioritization of functional requirements. Emphasssalso put on high quality and adapting to chaggi
requirements. It has the advantage of a solid sifsature (similar to traditional methodologies)hile
following the principles of lightweight SDLC methsad

M. Feature Driven Development (FDD)

Feature Driven Development (FDD) is a model-driwort-iteration software development process [13].
The FDD process starts by establishing an overalleh shape. This is followed by a series of twokvee
“design by feature, build by feature” iteration® [consists of five processes: develop an overaliieh build
a features list, plan by feature, and design biufeaand build by feature. There are two typedeselopers on
FDD projects: chief programmers and class ownetse Thief programmers are the most experienced
developers and act as coordinator, lead designdrnreentor. The class owners do the coding. Onefih@f¢he
simplicity of the FDD process is the easy introduttof new staff. FDD shortens learning curves eedlices
the time it takes to become efficient. Finally, 2D methodology produces frequent and tangiblaltesThe
method uses small blocks of user-valued functityalin addition, FDD includes planning strategiesda
provides precision progress tracking.

© 2013, IJICSMC All Rights Reserved 265

T Bhuvaneswarét al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 5, May- 2013, pg. 262-267

N. Rational Unified Process (RUP)

The Rational Unified Process (RUP) works well wittoss-functional projects [16]. RUP contains sistbe
practices: manage requirements, control softwaengés, develop software iteratively, use compobaséed
architectures, visually model, and verify qualiBUP is a process framework and can be used inreithe
traditional (e.g. waterfall style) or a lightweightanner. One example of the model's flexibilitytie do
process developed by Robert Martin. The dX proteggentical XP and is a fully compliant instandeRUP.
The process was designed for developers that lwauset RUP, but would prefer to use XP. Finallhaugh
RUP was originally intended to help manage softvpaiogects, its flexible design makes it applicatoléarge e-
business transformation projects. After applyingfesv critical augmentations to the process, RUP can
effectively provide a framework for enterprise-wiglbusiness transformation.

0. SCRUM

A SCRUM is a Rugby team of eight individuals [1%¥he team acts together as a pack to move the dath d
the field. Teams work as tight, integrated unitshwa single goal in mind. In a similar manner, 8€RUM
software development process facilitates a teamsfdBCRUM is a light SDLC methodology for smallntesato
incrementally build software in complex environnenSCRUM is most appropriate for projects where
requirements cannot be easily defined up frontarabtic conditions are anticipated. SCRUM dividgs@ect
into sprints (iterations) of 30 days. Functionalgydefined before a sprint begins. The goal ofgfecess is to
stabilize requirements during a sprint.

P. Wisdom

The White-water Interactive System Development vitbject Models [15] addresses the needs of small
development teams who are required to build andhtaiai the highest quality interactive systems. Wisdom
methodology has three key components: A softwaoegss based on user-centered, evolutionary, and-rap
prototyping model. A set of conceptual modellingations that support the modelling of functionad aron-
functional components. A project management phpbgo based on tool usage standards and open
documentation. Wisdom is comprised of three majorkifows: requirements workflow, analysis workflow,
and design workflow. In addition, the methodologybased on seven models and uses four types ofdiag
Task flow plays an important role in Wisdom andresponds to a technology-free and implementation-
independent portrayal of user intent and systeporsibilities.

Q. The Big Bang Modéel

The Big- Bang Model [16] is the one in which hugaaunt of people or money is put together, a lot of
energy is expended and out comes the perfect sefraduct or it doesn’'t. The beauty of this mddehat it's
simple. There is little planning, scheduling, ornial development process. All the effort is spesteloping
the software and writing the code. It is an ide@icpss if the product requirements aren’t well usa®d and
the final release date is flexible. It is also imtpat to have flexible customers, too, because they't know
what they're getting until the very end.

R. Code and Fix

"Code and fix" development [11] is not so much éibdeate strategy and schedule pressure on software
developers without much of a design in the waygmmmers immediately begin producing code. At some
point, testing begins (often late in the develophuogcle), and the inevitable bugs must then bedfilzefore the
product can be shipped.

I1l. CONCLUSION

In this paper various software development lifeleynodels are studied and compared. The Waterfadlein
provides base for other development models. Thargtdges and disadvantages of enhanced models such a
Iteration model, V-shaped model, Spiral model, &xte programming, Evolutionary Prototyping Model,
Iterative and Incremental Method, Rapid prototypingodel, The Chaos Model, Adaptive Software
Development (ASD), The Agile Software Process (ASBjystal, Dynamic System Development Method
(DSDM), Feature Driven Development (FDD), Ratiokalified Process (RUP), SCRUM, Wisdormhe Big
Bang Model, and code and fix models are compared.

© 2013, IJICSMC All Rights Reserved 266

(1
(2]

(3]

(4]
(5]
(6]
(7]
(8]
19

T Bhuvaneswarét al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 5, May- 2013, pg. 262-267

REFERENCES

Royce, Winston, "Managg the Development of Large Software Systems", Radiogs of IEEE
WESCON 26, 1970.

Kevin Forsberg and Harold Mooz, “The RelationshfpSgstem Engineering to the Project Cycle,” in
Proceedings of the First Annual Symposium of Natld@ouncil on System Engineering, October 1991:
57-65.

Craig Larman and Victor R. Basili,"lIterative andctamental Development: A Brief History". IEEE
Computer (IEEE Computer Society) 36 (6): 47-56.:D@il109/MC.2003.1204375. ISSN 0018-9162.
Retrieved 2009-01-10.], June 2003.

Boehm B, "A Spiral Model of Software Developmentdaginhancement”, ACM SIGSOFT Software
Engineering Notes", “ACM", 11(4):14-24, August 1986

Mohamed Sami Abd El-Satar” Software Development l@fycle Models and Methodologies”, 2012,
http://melsatar.wordpress.com

Craig Larman and Victor Basili, Iterative and Intrental Development: A Brief History, IEEE
Computer, June 2003.

C. Melissa McClendon, Larry Ragout, Gerri AkerseThnalysis and Prototyping of Effective Graphical
User Interfaces. October 1996.

ACM Digital Library, The chaos model and the chaysle, ACM SIGSOFT Software Engineering
Notes, Volume 20 Issue 1, dad 1995.

Adaptive Software Development: A Collaborative Apgech to Managing Complex Systems, High
smith, J.A., and 2000 New York: Dorset House, 3928BN 0-932633-40-4.

[10] International Conference on Software Engineeringyoto Japan (Aoyama, 1998a).
[11] McConnell, Steve. "7: Lifecycle Planning”. Rapid V@éopment. Redmond, Washington: Microsoft

Press.

[12] Rietmann: DSDM in a bird’s eye view, DSDM Consontiup. 3-8 (2001).
[13] Coad, P., Lefebvre, E. & De Luca, J. (1999). Javadéling In Color With UML: Enterprise

Components and Process. Prentice Hall Intermaiti¢lSBN 0-13-011510-X).

[14] Linda Rising and Norman S.Janoff, AG Communicat8ystems, “The Scrum Software Development

Process for Small Teams, |IEEE Software July/Aug080.

[15] Nuno Jardim Nunes, Jodo Falc@o e Cunha” Wisdom itehter Interactive System Development with

Object Mode Version 4.0 / 21 April 2000.

[16] Wollack, Edward J. "Cosmology: The Study of the wémge". Universe 101: Big Bang Theory. NASA,

2010

[17] Ernest Mnkandla, "About Software Engineering Frameks and Methodologies", IEEE AFRICON

2009.

© 2013, IJICSMC All Rights Reserved 267

