FIND THE BEST LINK: A STATISTICAL ANALYSIS OF WSN ROUTING METRICS INCORPORATED WITH DSR ALGORITHM

Poojitha.K
¹Computer Network Engineering, New Horizon College Of Engineering, India
²poojithakadhir1991@gmail.com

Abstract — This document gives formatting instructions for authors preparing papers for publication in the Proceedings of an IEEE conference. The authors must follow the instructions given in the document for the papers to be published. You can use this document as both an instruction set and as a template into which you can type your own text. Routing protocol plays an important role in data communication. A wireless sensor network (WSN) is usually deployed in scenarios where efficient and energy-aware routing protocols are desired. In wireless sensors, the radio-frequency (RF) modules consume most of the energy. Hence it has become a necessity to come up with an efficient routing metric that utilizes the minimum energy for route discovery. Routing metrics are important in determining paths and maintaining the quality of service in routing protocols. The most efficient metrics need to send packets to maintain link-quality measurement using the RF module, which again uses lots of resources. In the proposed system, versions of the two prominent link-quality metrics, received signal strength indication (RSSI) and link-quality indication (LQI) are introduced. These two metrics are used in conjunction with the existing DSR algorithm. By doing so, some of the shortcomings of DSR algorithm are addressed and the performance of the same is improved by adding some new functionalities. The new functionalities being the addition of RSSI and LQI. These two metrics make sure that very less resources are utilized in the overall process. The results are graphically analyzed by comparing the existing system and the proposed system.

Keywords — DSR algorithm, LQI, Routing metrics, RSSI, WSN
I. INTRODUCTION

WSNs are used in different scenarios. Monitoring the environment in a targeted area is more interesting in WSN implementation, such as using wireless sensors during a forest fire to monitor the fire and its movements. The data from sensors should be collected and then received and analyzed in the sink. In most of the scenarios, the sinks are not in the RF range of wireless sensors, and intermediate nodes should relay the data toward the sink. The use of a proper and efficient routing protocol affects the efficiency, reliability, and lifetime of the network. Routing protocols use metrics to find the best path to the sink. Hop count (HC) is the most popular and is the Internet Engineering Task Force (IETF) standard metric. It is simple to calculate, even by the devices that have low resources in the central processing unit, memory, or energy, such as wireless sensors. This metric avoids any computational burden on devices regarding calculation of the best route to the destination on routing protocols. The path weights are equal to the total number of routers through it. To measure and maintain the link quality, the protocols should send packets and use an RF module. To avoid using more energy in the RF module for sending packets to maintain link-quality measurement, the use of RSSI or LQI is proposed in this article. RSSI is a dimensionless quantity that is measured at the receiver’s antenna. It represents the signal strength observed at the receiver at the moment of reception of the packet. The measurement of RSSI is not accurate due to floor noise and current interfering transmission. We assume that WSNs are used in outdoor environments where there is no noise or where the interference is minimal, based on the time-division technique that avoids concurrent communication. RSSI is provided by most of the wireless sensor chips. The CC2420 chip has a built-in RSSI that provides a digital value. The LQI is a link quality metric that is measured in most wireless sensor chips. CC2420 provides an LQI measurement based on the characterization of the strength and quality of a received packet, as it is defined by IEEE 802.15.4. In this article, RSSI, and LQI have been measured in simulation environments.

II. BACKGROUND AND PREVIOUS WORK

A. Received Signal Strength Indication

The RSSI is a parameter that shows the signal strength in the receiver. Signal propagation follows the inverse square law. The intensity of the signal in the receiver is inversely proportional to the square of the distance from the source.

\[\text{Signal Intensity Power} = K \frac{1}{\text{distance}^2} \]

where \(K \) is a constant value.

\[P_R = \frac{P_T}{4\pi R^2} G_r G_e \]

\(P_R \) denotes power in the receiver, \(P_T \) denotes the signal power in the transponder, and \(R \) is the distance between the transponder and the receiver. \(P_R \) is calculated based on the distance between the transponder and the receiver antennas and also some other parameters, such as gains in antennas.
The power of the signal in reception or P_R is calculated as:

$$P_R = P_t G_T \left(\frac{\lambda}{4\pi R} \right)^2 G_R [W] \quad (3)$$

$$\alpha = \frac{\lambda^2}{4\pi} G_R \quad (4)$$

$$P_R = P_t + G_T - 20 \log_{10} \left(\frac{4\pi R}{\lambda} \right) + G_R [\text{dBW}] \quad (5)$$

In (5), λ denotes the wavelength, R is the distance between the transponder and the receiver, G_R indicates the antenna gain in the receiver, G_T denotes the antenna gain in the transponder, and α denotes the effective area of antenna in the receiver.

The RSSI is the measurement of the power of the signal that is presented in the receiver antenna. The RSSI is an indication of the power level that is measured in the receiver antenna. Therefore, the stronger the signal, the higher the RSSI value. Then, compared with the transponder signal power in the same hardware and environment, we could find how far we are from the transponder antenna. There is no standard in IEEE 802.11 regarding the RSSI reading and any particular physical parameter of the radio signal. The relation between the RSSI value and power level in milliwatts or decibel-milliwatts has been defined by vendors and chip set makers. They provide an RSSI value from zero to a maximum (mW or dBm) based on their accuracy, granularity, and the actual power.

B. Link Quality Indication.

The standard lets the implementations use energy detection (ED), signal-to-noise ratio (SNR), or a concoction of these parameters. LQI Link Quality Indicator (LQI) is used in Zigbee networks to indicate how strong the communications link is. LQI is a computed value, based on the received signal strength as well as the number of errors received. One simple way of determining whether the communication link is strong enough or not is to check whether the transmitted packet has reached the intended destination hale and hearty. That is to say, the transmitted packet should reach the destination as it was sent from the source, it should be complete, free of any errors and even the signal strength has to be maintained. Only if all these are met, we can say that the link has good quality. There are a number of ways to check the quality of the link. In one such standard calculation method, LQI has been described as the characterization of the strength and/or quality of the received packet.

The standard lets the implementations use energy detection (ED), signal-to-noise ratio (SNR), or a concoction of these parameters. LQI value has been defined to be in the range of 0X00 and 0Xff (0–255), which should be associated with the lowest-and highest-quality signals, respectively, at the receiver. The details of how the LQI is calculated and which parameters should be used in LQI calculation are not specified in this standard. CC2420 is an RF chip that is used in most wireless sensors, and it provides the LQI as a built-in parameter that can be obtained from the chip and uses the average correlation value of RSSI for each incoming packet, based on the first eight symbols following the start of frame delimiter. The average correlation value for the first eight symbols is added to each received frame with the RSSI and cyclical redundancy checking (CRC). The correlation value is between +50 and +110, where +110 indicates the maximum quality frame.
estimation and +50 indicates the lowest quality frame estimation. The software converts the correlation value to the range of the LQI that is between 0 and 255.

C. DSR Algorithm.
The Dynamic Source Routing Protocol is a source-initiated on-interest steering protocol. A hub keeps up path reserves having the source routes that it is mindful of. The node upgrades sections in the path store as and when it finds out about new paths. The two major stages of the protocol are:

- Route discovery
- Route maintenance.

At the point when the source hub needs to dispatch a parcel to a end node, it turns upward its path store to figure out whether it as of now contains a path to the end node. In the event that it finds that an unexpired path to the end point exists, then it utilizes this route to dispatch the parcel. However, in the event that the hub does not have such a path, then it starts the route revelation process by flooding a route demand bundle. The path demand parcel will have the source's location and that of the destination, and an extraordinary ID number. Every transitional node checks whether it knows of a path to the end node. In the event that it doesn't, it annexes its location to the path record of the parcel and advances the bundle to its nearby hubs. To constrain the number of path solicitations spread, a node procedures the route demand bundle just in the event that it has not as of now seen the parcel and it's location is not present in the path record of the bundle.

A route reply is initiated when either the destination or a middle of the path node with current data about the destination gets the route request parcel. A route request bundle coming to such a node as of now has, in its route record, the arrangement of jumps taken from the source to this hub.

As the route request packet proliferates through the system, the path record is shaped. On the off chance that the route reply is created by the end node then it puts the path record from route request packet into the route reply message. Then again, if the node creating the route reply is a moderate node then it adds its reserved route to receiver to the path record of route request packet and places that into the route reply message. To dispatch the route reply packet, the reacting hub must have a path to the source. In the event that it has a route to the source in its path store, it can utilize that road. The converse of route record can be utilized if symmetric connections are bolstered. On the off chance that symmetric connections are not bolstered, the node can start route revelation to source and piggyback the route reply on this new path request.

This protocol uses two types of packets for route maintenance:- Route Error packet and Acknowledgements. At the point when a hub experiences a deadly transmission trouble at its information connection layer, it produces a Route Error parcel. And when a node gets a route blunder packet, it expels the bounce in lapse from it's route store. All routes that contain the bounce in lapse are truncated by then. Acknowledgement packets are utilized to confirm the right operation of the route joins. This additionally
incorporates uninvolved acknowledgements in which a node hears the following jump sending the packet along the path.

D. NS-2

Network Simulator (Version 2), widely known as NS-2, is essentially an occasion driven reenactment instrument that has demonstrated helpful in contemplating the dynamic way of correspondence systems. Reenactment of wired and in addition remote system capacities and conventions (e.g., directing calculations, TCP, UDP) should be possible utilizing NS-2. By and large, NS-2 furnishes clients with a method for determining such system conventions and reproducing their relating practices. Figure(1) below demonstrates the essential structural engineering of NS-2. NS-2 furnishes clients with an executable summon ns which tackles data contention, the name of a Tcl scripting document. Clients are putting forth the name of a Tcl recreation script as an info contention of a NS-2 executable summon ns. Much of the time, a reenactment follow document is made, and is utilized to plot diagram and/or to make movement.

Fig (1): Architecture of NS-2

NS-2 simulation consists of two distinct phases.

Phase I: Network Configuration Phase

In this stage, NS-2 builds a system and sets up initializations. The beginning set of steps comprises of occasions that are scheduled to happen at sure times (e.g., begin TFTP movement at 4 second.). This stage compares to each line in a Tcl recreation script before executing instproc run{} of the Simulator object.

Phase II: Simulation Phase

This part relates to a single line, which summons instproc Simulator::run{}. Humorously, this single line adds to most of the recreation. In this part, NS-2 moves along the chain of events and executes every event sequentially. Here, the instproc Simulator::run{} begins the recreation by sending out the first occasion in the
chain of occasions. In NS-2, "starting the event" or "terminating the event" signifies "taking activities relating to that occasion". An activity is, for instance, beginning TFTP movement or making another occasion and embeddings the made occasion into the chain of occasions.

The followings are the three key steps in defining a simulation scenario in a NS-2:

Step I: Simulation Design

The first step in simulating any network is to first design the simulation. In this stride, the clients ought to focus the recreation purposes, system design and suppositions, the execution steps, and desired results.

Step II: Configuring and Running Simulation

This step implements the design. It in turn consists of two phases:

- Network configuration phase: In this phase network components (e.g., node, TCP and UDP traffic and agents) are initialized, created and configured as per the the simulation design requirements. Also, the events such as data transmission are scheduled to start at a stipulated time.

- Simulation Phase: This phase begins the simulation which was decided in the previous phase. It keeps the simulation clock going and executes the various events sequentially. This stage for the most part keeps running until the simulation clock came to an edge. By and large, it is helpful to characterize a simulation situation in a Tcl scripting record and nourish the document as a data contention of a NS-2 syntax.

Step III: Post Simulation Processing

The important task in this step includes verifying the overall durability of the program and estimating the accomplishment of the simulated network. While the first duty is debugging, the next one is nothing but properly collecting and compiling the simulation results.

III. IMPLEMENTATION

The various modules in the theses are,

- Network model
- DSR algorithm
- Received signal strength indication
- Link quality indication
- Performance analysis
3.1 Network Model

Network model comprises of steps that talks about how the network environment is designed. For defining the network various parameters have to be initialized and defined with values that suits our project requirement. Then the simulation window has to be defined. Even that has a number of parameters to be defined. Then the basic and the most important aspect of the project, the wireless nodes, have to be created as per the requirement. Then the created nodes have to be deployed in the simulation environment. Required positions are assigned to the deployed nodes. Then the nodes travel to those positions. All these processes happen in the network model module.

3.2 DSR Algorithm

The next step is the DSR algorithm. This comes as the inbuilt functionality in NS2. We just have to mention it as a parameter value. We have a parameter called ‘routing protocol’ in NS2. There we’ll just mention as DSR. The initial process of DSR includes sending the hello packets to discover the neighboring nodes. The hello packet originates from the first node. From there onwards the packets are broadcasted or flooded into the network. All the neighboring nodes are discovered and the proximity of each node from every other node is calculated. These distances are recorded in a file as it is needed for the further steps of the project.

3.3 Received Signal Strength Indication

Once all the neighboring nodes are discovered and the distances between all the nodes are recorded, the next step is to calculate the RSSI value for each node. RSSI is calculated at the receiver end once the packet from the source reaches it. The value thus obtained tells us how far is the receiver from the source. Higher the RSSI value, higher will be the signal power at the receiver and hence that node with highest recorded RSSI value is considered to be the nearest one from the source. That is the purpose of calculating the RSSI value, to find the nearest node for next hop, that has high signal strength for received packet. Sometimes even though a particular node is very near, the RSSI value recorded for that node will be less because of problems like noise and jitter. Hence our priority is the most nearest node with highest RSSI among all the available neighbors. Here we are not sending exclusive packets just for the calculating the RSSI value. The calculation is done depending on the hello packets that are transmitted in the initial stage.

3.4 Link Quality Indication

As the name suggests, LQI is used to maintain the quality of the transmission link. In other words we are making sure that the packet sent from the source reaches the intended destination in spite of adversaries like link failures or packet loss. Once the RSSI value is calculated, based on the values thus obtained we decide the intermediate nodes for the transmission. For each of the intermediate node, we assign two helper nodes. The intermediate node sends election request to its immediate neighbors, which are again selected based on RSSI values only. Two such nodes are selected for each intermediate node that has the next best RSSI value when compared to the intermediate nodes. This election procedure has to be intimidated to the source node as well. Packet that comes to the intermediate node is saved as a copy in the secondary helper nodes as well. In case a packet that comes to intermediate node is lost or if the path from the intermediate node to the next node is lost,
then the helper nodes come into role immediately. They forward the packet on the behalf of its parent node. Thus the retransmission request need not be sent all the way to the source node. This saves considerable transmission time, bandwidth and energy of the nodes.

3.5 Performance Analysis

The data regarding the simulation is recorded in trace files. That data is extracted and comparison is done using graphs. The graphs thus plotted are studied and conclusion is drafted.

WSNs are used in different scenarios. Monitoring the environment in a targeted area is more interesting in WSN implementation, such as using wireless sensors during a forest fire to monitor the fire and its movements. The data from sensors should be collected and then received and analyzed in the sink. In most of the scenarios, the sinks are not in the RF range of wireless sensors, and intermediate nodes should relay the data toward the sink. The use of a proper and efficient routing protocol affects the efficiency, reliability, and lifetime of the network. Routing protocols use metrics to find the best path to the sink. Hop count (HC) is the most popular and is the Internet Engineering Task Force (IETF) standard metric. It is simple to calculate, even by the devices that have low resources in the central processing unit, memory, or energy, such as wireless sensors. This metric avoids any computational burden on devices regarding calculation of the best route to the destination on routing protocols. The path weights are equal to the total number of routers through it. To measure and maintain the link quality, the protocols should send packets and use an RF module. To avoid using more energy in the RF module for sending packets to maintain link-quality measurement, the use of RSSI or LQI is proposed in this article. RSSI is a dimensionless quantity that is measured at the receiver’s antenna. It represents the signal strength observed at the receiver at the moment of reception of the packet. The measurement of RSSI is not accurate due to floor noise and current interfering transmission. We assume that WSNs are used in outdoor environments where there is no noise or where the interference is minimal, based on the time-division technique that avoids concurrent communication. RSSI is provided by most of the wireless sensor chips. The CC2420 chip has a built-in RSSI that provides a digital value. The LQI is a link quality metric that is measured in most wireless sensor chips. CC2420 provides an LQI measurement based on the characterization of the strength and quality of a received packet, as it is defined by IEEE 802.15.4. In this article, RSSI, and LQI have been measured in simulation environments.

IV. RESULTS

As explained earlier, this theses was implemented in a simulation environment. The simulator used is NS-2. The following images were taken in the form of screenshots during the process of simulation. In figure (2) we can see that the nodes are deployed into the network. The deployed nodes have taken their respective places in the network environment. The first step after that is to send out the hello packets to discover the neighbour nodes. It is a necessary step in any simulation done in NS-2 which involves wireless nodes. Once that is done, in figure (3) we can see that the nodes are broadcasting the route request packets. This is the first step in DSR algorithm implementation. Once the destination node receives the route request packet, it sends out the route reply packets all the way to the source node. That is how the intermediate nodes are chosen. In figure (4) we can see that the intermediate nodes are chosen, and also each intermediate node selects two helper node. In any situation the
main intermediate node has to fail, at that time, these helper nodes take up the job of delivering the packet to the destination. The data transmission phase is seen in figure (5). Figures (6) through (8) show the results studied in graphical form. It shows the comparison between the original DSR algorithm, and the new one with the RSSI and LQI features added to it. The captions under the graph makes it self explanatory.

Fig (2): Nodes broadcasting hello packets for neighbour discovery.

Fig (3): Route-request broadcasting.
Fig (4): Each intermediate node selects two helper nodes.

Fig (5): Data transmission.
Fig (6): PDR comparison graph of proposed and existing system.

Fig (7): Energy comparison graph of proposed and existing system.
V. CONCLUSION

In wireless sensor networks there has always been a fuss about finding the most efficient routing algorithm that utilizes the available resources in an most efficient way possible. This project is one such effort in that front. Here we have tried to improve the already existing routing algorithm, that has been already proved by many as the better option when compared with rest of its peers. We took two of the performance analysis parameters and made them to operate as routing metric. The results shown in the graphs, speak for themselves. We can see that the proposed algorithm is showing some improved performance when compared to the existing algorithm. In other words, here we are trying to prove, using graphical analysis, that both RSSI and LQI can be made to work together to obtain an efficient routing metric.

This is just a small step towards a bigger picture. More such metrics can be brought together and can be made to work as routing metrics. Each of them would provide a new advantage with additional features. DSR, being a simple and ‘easy-to-understand’ type of algorithm, provides the flexibility for such improvements. Hence, there is always scope for further improvement of this algorithm.

In this implementation the input values are hardcoded. But they can be made to be taken as runtime arguments. And also the node positions are also hardcoded in this implementation. Even they can be altered to take on random positions, so that for every run of the project, the nodes assume different positions. This makes the project more interactive and real-time. And further research can be done on more such new metrics that can be incorporated with the existing routing algorithms to make them better than what they are right now. They offer the advantage of adding additional features.
REFERENCES

Papers

