
Available Online at www.ijcsmc.com

International Journal of Computer Science and Mobile Computing

A Monthly Journal of Computer Science and Information Technology

ISSN 2320–088X

 IJCSMC, Vol. 2, Issue. 4, April 2013, pg.177 – 185

RESEARCH ARTICLE

© 2013, IJCSMC All Rights Reserved 177

Enhancing Interaction between Smartphones and Web
Services on Cloud for Improved Bandwidth and Latency

Mandeep Singh1, Kanwalvir Singh Dhindsa2
1Assistant Professor, Chandigarh Engineering College, Landran, India

2Associate Professor, Baba Banda Singh Bahadur Engineering College, India

1 mandeepsingh22@yahoo.com; 2 kdhindsa@gmail.com

Abstract— As cellular network infrastructures are improving day by day; they are becoming the ideal clients
to access the any Web resources, especially Internet Based Services. However, Smartphones have certain
limitations in connecting smartphone based devices to existing Internet based Services. This paper mainly
focuses on focuses on the following limitations: connection loss, bandwidth, latency, and limited resources.
This paper implements a platform independent architecture for connecting smartphones to the existing
Internet based Services. The architecture includes a cross platform design of smartphone based service client
and a middleware for increasing the interaction between mobile clients and Internet based Web Services. The
architecture can be deployed on Cloud Platforms, like CloudSim and Google App Engine to enhance the
scalability and reliability.

Key Terms: - Smartphones; CloudSim; XML; PHP; Apache; Application Server; Recess PHP Platform;
Representational State Transfer; RRJSON

I. INTRODUCTION
Smartphones are expected to increase gradually from current users. As cellular network infrastructures

continuously improve, their data transmission becomes increasingly available and affordable, and thus they are
becoming popular ways to access the Internet Based Services, especially the Web Services that are also
available in the cloud. Today, smartphone devices like iPhone, and Android, have included applications that
consume the web services from popular websites, such as YouTube, Msn and eBay. The share of android in
smartphone market is 46% and iPhone is 35%.

However, there are problems in connecting smartphones to existing Internet based Services. Firstly, the

Internet Based Services need to provide optimization for mobile clients. For example, the size of the Web
Services messages needs to be reduced to fit the bandwidth of mobile clients. Secondly, smartphones have to
adapt to different kinds of Web Services, for example, SOAP and RESTful Services. Figure 1 shows a
smartphone accessing Web Services. This paper investigates how Cloud Computing [1] can help smartphones
connect to existing Internet based Services.

II. PROBLEM DEFINITION
Accessing Internet Based Services from a smartphone based client is different compared to the standard web

services scenarios, due to these factors environment. A survey done by Earl et al. [2] evaluated how well the
current smartphones including Android, iPhone, Symbian (S60), and Windows Mobile, support the concept of
mobile network based research. According to the survey, all of these mobile platforms have certain limitations.

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 178

• Smartphones have limited resources like Processing power, screen size etc.
• The communication between client and service is established through wireless network.
• Existing Web Services in the Cloud do not support smartphones.

Fig 1: Smartphone Accessing the Internet Web Services

There are several challenges in accessing the Internet based Services from the existing smartphone clients.

The following two are the focus of this paper.

a) Loss of connection Problem: Since the smartphone based devices are not stable and due to the
mobility of the smartphones and the wireless network setup, smartphones can be temporarily removed
from the previous connected network and later may join network.

b) Bandwidth/Latency Problem: Cell networks have a very limited bandwidth and are often billed based
on the amount of data transferred. However, even a simple SOAP message often contains a large chunk
of XML data, which consumes a lot of bandwidth and the transmission can cause major network
latency. In addition, the SOAP message contains mostly XML tags that are not all necessary for mobile
clients.

c) Limited resources problem: Smartphone clients are normally “thin clients” [3] with a less processing
power.

They also have limited screen size and computational power. These shortcomings are only due to mobility [4].

III. ARCHITECTURE FOR SMARTPHONE DEVICES
Middleware Architecture [5] is mainly used in Distributed Computing system. Distributing Computing

Systems [6] “consist of multiple processors that do not share primary memory, but sending messages over
network”. Mobile clients are distributed computers that connect to the middleware. In Emmerich’s paper [7], he
defined four requirements for general middleware.

Network communication: Hosts who need to communicate with each other involves some transport layer

(TCP and UDP) and marshaling, a process of converting data structure to transferable format.

Coordination: Since distributed systems have multiple points of control, different components need to

coordinate and collaborate through synchronization.

Reliability: Requests maybe lost during the network transmission. The middleware needs to deploy error

detection and correction mechanisms to enhance reliability.
Scalability: Distributed systems deal with client interactions and also interact between distributed components.

Changes in the allocation of components could affect the system architecture, which refers as transparency in
the reference model of open distributed processing.

Heterogeneity: Components in a distributed system can be implemented with different languages and

deployed on different platforms. Thus, the design needs to consider a heterogeneous environment.

Middleware Architecture is often used to extend functions for thin clients, like mobile devices. Uribarren et al.

[8] proposed a middleware for adaptation in mobile environments. The proposed middleware hides the
complexity of deploying ubiquitous applications. Applications are automatically moved between different
platforms.

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 179

When designing distributed systems, scalability should be the primary concern. Rajive et al. [9] did research
on investigating scalable middleware to support mobile Internet applications

The proposed middleware solutions for Smartphone based devices mostly focus on application and content

adaptation. Coordination, scalability, reliability, and heterogeneity are four fundamental requirements for
general middleware as well as middleware for mobile device [10]. Scalability can be achieved with distributed
middleware. Context can help middleware to adapt to the heterogeneous environment. However, the goal of the
paper is to use middleware to improve the interaction between mobile clients and internet services as well as use
Cloud platforms to improve the scalability of the middleware.

IV. PROPOSED ARCHITECTURE OF MIDDLEWARE
The middleware that is proposed will act as proxy that is hosted on the Cloud platforms which provide mobile

clients access to Cloud services. The middleware architecture will improves interaction between mobile clients
and Cloud Services, for example, adaptation, optimization and caching. The middleware also provides extended
functions to mobile clients. In general, the architecture enhances the functionality, reliability and compatibility
of the interaction between smartphones and Cloud Services.

In order to overcome the problems listed in the previous sections, the Cloud Computing architecture provides

the following features to enhance the interaction between mobile clients and Web Services.

No Loss of connection: Client and middleware caching – Copies of service results are stored on both mobile

clients and the middleware. When the mobile clients are not able to connect to the middleware, the client-side
cache is used. When the middleware to server connection is not available, the middleware returns its cached data
to the mobile clients.

Bandwidth/Latency: Protocol transformation – Protocol transformation reduces the latency as well as

bandwidth of the client to service interaction. The middleware transforms Simple Object Access Protocol to a
much light- weight format RJSON through RESTful Internet Web Services. Transferring SOAP to light-weight
protocols, like RESTful, reduces processing time as well as the size of the messages [11].

Fig 2: Architecture for Smartphones Middleware

Result optimization: Result optimization reduces the size of the service results, thus reduces the bandwidth

used to interact with internet Services. The middleware converts the format of service results from XML to
RJSON and removes unnecessary data from the original service result. Less data transferring also reduces
network latency.

V. EXPERIMENTAL SETUP
The goal of the middleware cloud architecture is to provide a proxy for mobile clients connecting to Cloud

services. Figure 2 shows an overview of the middleware cloud and its main features. The architecture consists of
three parts, the mobile clients, the middleware and the Cloud services. Since Cloud services are usually
controlled by service providers, the middleware performs all the necessary adaptation to the mobile clients.

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 180

A. Middleware Architecture

The middleware is responsible for consuming the Cloud Services whether they are SOAP or RESTful

services like RJSON and delivers the service result to the smartphone. On the smartphone, users can define Web
Services and later execute the pre-defined Web Services.. The middleware provide RESTful interface for the
mobile clients. Figure 4.2 indicates how to consume/execute a pre-defined Web Services. Note that the
execution starts with a HTTP GET request whose URL path contains the resource identifier to the web. When
Web Services are executed through the middleware, the follow steps are involved in the middleware.

• The Smartphone sends a HTTP GET request with an identifier of a Web Services to the middleware.
• The middleware deals with interactions to the Web Services (and generates SOAP client if necessary).
• The middleware extracts (RJSON or XML parsing) the required service results from the original

service result and form a new service results in RJSON format.
• The middleware stores a copy of result with the service ID in the database and returns the optimized

result to the mobile client
.

B. Mobile Client implementation on middleware in Smartphones

In order to implemented the proposed smartphone based architecture with client side native libraries.
Smartphones has an embedded browser which includes JavaScript libraries that implement several common
functionalities of the client side browser, for example, location service and file system access.

To verify the smartphone based client design, I have integrated the design with an existing online application

in php application for Punjabi newspaper portal, called Sadelok Newspaper as shown in Figure 3. The
application is re-implemented with the mobile client design on smartphone. Using the application, the viewers
can access the Web Services of the portal which is hosted on cloud through the smartphones.

The client application can be divided into three layers, User Interface (UI), controller and cache manager. The

UI layer has two implementations, native UI and embedded browser UI. Figure show how they look like on the
device. Figure show the architecture of both implementations. The controller is the key coordinator among the
UI, middleware, and cache manager. The controller creates the UI and gets data from the RESTful client or
cache manager. If network connections are not available, the controller passes cached data to the UI components.

Fig 3: Layout on Android Browser of Sadelok Application

Otherwise, it invokes the RESTful client to get data from the middleware. The cache manager then saves

recent received data on a local file system.
With the native UI, the client interacts with the middleware asynchronously. When the native UI requires data,

it passes a callback to the controller and continues to receive UI events as shown in Figure 4.

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 181

The controller starts a new thread to interact with the middleware. When the data arrives, the UI gets updated
through the callback. With this model, the native UI can be updated as soon as the data changes. The embedded
browser needs to wait for the data to arrive, because the native library cannot receive a JavaScript callback. The
embedded browser also cannot be updated automatically when the data changes.

The entire middleware application is hosted on a Google Application Engine GAE uses the Services oriented
architecture. The middleware architecture is implemented as a Core PHP Web application. The application uses
the RESTful Internet Service interfaces to mobile clients, since RESTful web services are more suitable for
mobile devices [12]. Because the middleware uses RESTful and RJSON API of core PHP libraries. It has to be
deployed on Apache Web server container.

The middleware also uses Apache HTTP client, a popular RJSON client library which provides functions of
composing custom HTTP requests, sending and receiving HTTP requests and responses. The middleware
architecture expects the Web Services to return XML responses, so that results can be extracted using the PHP
build-in library. The middleware uses a local MySQL database. User defined tasks, service actions, parameters
and results are Java objects which map to database entities using the PHP API.

Fig 4: Native Smartphone Implementation

The middleware still has a RESTful interface to mobile clients, but the Google Application Engine platform

itself is a Web application server which can only handle server requests. The Apache HTTP client library is not
supported on the Google Application Engine, due to the restrictions from the provider. Instead the middleware
constructs and sends HTTP requests through the URL fetch service which implements the PHP RESTful
Framework interface.

To enhance the interaction between mobile clients and Web Services

• Evaluate the cross-platform capability of the mobile clients design.
• Implement the mobile client in different models.
• Consume RESTful WS through the middleware.
• Transfers SOAP WS to RESTful Services to be consumed by mobile clients.
• Reduce bandwidth consumption of mobile clients.
• Push updates to mobile clients in real-time.

To use the Cloud platform as a way to improve scalability and reliability of the middleware

• The middleware can be implemented on CloudSim and Google Application Engine.
• Cloud platform improves the scalability and reliability of the middleware.

VI. CASE SCENARIOS
The middleware is implemented as a standard PHP Web Application. The middleware uses the PHP 5.4.13

standard, so it can be deployed in most Apache server containers. The PHP RESTful Framework of Recess [14]
interface implements the pseudo-Restful based web service on a RESTful PHP Framework / MySQL stack.).
The middleware also uses the MySQL database to interact with the MySQL Community Server 5. In the
following experiments, the middleware is deployed in three platforms, Webserver with Apache Platform, virtual
machine and Google Application Engine. Because Application Engine uses Google’s internal structure, its
hardware specification is not known.

Because some experiments require simulating a large number of mobile clients and calculating the response
times, a real mobile device is not capable of doing such task. A performance testing tool called Tsung is used as

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 182

a load generator. The simulator for the cloud is CloudSim [13]. Tsung is responsible for generating and sending
HTTP requests to the middleware in a specified rate. Tsung calculates the mean of response times every 10
seconds based on its log file. The load generator runs on the standard server for the Sadelok News Portal.

The mobile client is implemented on Android.. The Android device used is using Android Version 4.1. The
build-in Apache HTTP client is used to send HTTP request. Both of them are connected to the Internet through
wireless 802.11g. The client uses the IO libraries from PHP and in build Browser Support.

A. Consuming Sadelok Web Services through the Middleware
This experiment compares the overhead associated with different WS interactions. Sadelok News Portal

provides both SOAP and RESTful WS interfaces for their News service. Their RESTful WS return result in
either XML or RJSON format. The tested WS is “id”, which returns an article under that id. The maximum list
size is 100 and the keyword used is “Android”. The middleware is run on the standard server.

The Sadelok_id":"51 segment of J SON and XML result were taken for the tests for the Web Services.
The size of the J S O N result is about 121 KB and the size of the X M L result is about 170 KB. The load

generator sends HTTP request at the rate of 1 request per 10 second (exponential distribution, mean
0.1request/s), so the middleware does not overload.

B. Enhancing Interaction between the Client and Middleware over Cloud

• Consume Sadelok RESTful Web Services directly with RJSON result.
• Consume Sadelok RESTful Web Services directly with XML result.
• Consume Sadelok RESTful Web Services through the middleware with RJSON result. The middleware

forwards the complete result. (no parsing involved)
• Consume Sadelok RESTful Web Services through the middleware with XML result.
• Consume Sadelok RESTful Web Services through the middleware with RJSON result. The middleware

returns the optimized result in RJSON format.
.

Fig 5: Assessing Sadelok Application through smartphone

• Consume Sadelok RESTful Web Services through the middleware with XML result. The middleware
returns the optimized result in RJSON format.

• Consume the sadelok portal through the SOAP WS through the defined could middleware.

Direct accessing versus Accessing through middleware: Comparing the experiments in Figure 5 and

Figure 6 in experiments 2,1, 4 and 5, whether the Sadelok services id return RJSON or XML, the middleware
the overhead is mainly caused by network latency between the client and middleware.

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 183

Java Script Object Notation vs. Extensible Markup Language
Compare the RJSON experiment in Fig 5 and XML experiments in Figure 6 interactions utilized by RJSON

have less response time than XML. It is because the XML messages are very large which causes transmission
delay of packets therefore slowing down the system.

Fig 6: Assessing Sadelok Application through smartphone

Optimized versus Non-optimized Protocols:
Compare the results of experiments in Figure 5 i.e. experiments no 2 & 3, result optimization with RJSON

reduces the response time a little. It certainly adds a little overhead on the response time. Because the
middleware does not do any processing of the service results,

Comparing the experimental results of 4 and 5 result optimization with XML adds a little overhead .The
middleware adds overhead with parsing and extracting data from the original result.

Table 1. Comparison of SOAP, XML and Recursive Java Script Object Notation Response Time

S.No Protocol Used Lowest (ms) Avg
(ms)

Highest (ms)

1. RJSON direct 0.051 0.093 0.177

2. RJSON
Middleware with
RJSON.

0.048 0.109 .238

3. RJSON
middleware
optimized.

0.056 0.11 0.277

4. XML direct 0.055 0.111 0.317
5. XML

middleware 0.058 0.128 0.388

6. XML
middleware
optimized

0.06 0.187 0.469

7. SOAP
middleware

0.117 0.299 0.534

RESTful versus SOAP Protocols:
As the experiment 7 indicated, Simple Object Access Protocol has higher response times than the rest of the

experiment with RJSON. SOAP is verbose protocol which means more data needs to be transferred.

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 184

Fig 7: Concurrent requests for RJSON and SOAP

Multiple concurrent Requests comparison for RJSON and SOAP
 As shown in Figure:7 multiple request from an smartphone were thrown at the middleware and major

parameters that were taken in consideration were memory consumption ratio, Response time ratio, Message
Length ratio. Processing SOAP requires comparatively heavy-weight.

Fig 8: If necessary, the images can be extended both columns

Messages and parsers and they have more response time. We can see that the communication delay is directly

proportional to the size of transferred message, which is certainly larger for SOAP than RJSON.

Parsing Time and Bandwidth Comparison of SOAP and RJSON:
JavaScript Object Notation and Extensible Markup Language are two widely used formats for transferring the

Internet web services messages. Major providers of cloud give a preference of using either one of them. I have
used the Java Document object model parser for the Extensible markup language and RJSON parser for RJSON
and I have accessed sadelok.com which have returned 25 requests in both XML and RJSON. We can see from
the Table 2 that the message which uses XML is larger and slower as compared to one which used the RJSON.

 Format Mess
age size
(KB)

Average
parsing time
(ms)

Android XML 56.2 386.4
Android RJSON 34.1 48.08

Table 2 Parsing times for the XML and RJSON message over 25 independent requests from Android

First, comparing the size, the size of XML chunk taken is 56.2 KB and 34.1 KB for RJSON. To represent the

same information, the XML format requires more bandwidth. Second, considering the parsing time, parsing
XML message is more resource consuming than parsing RJSON message on both Android and Blackberry. The
slowness is not only due to the size, but also the complexity of parsing. Finally, RJSON format also has very
stable parsing time. However, it is very difficult to represent complex data structure in RJSON format.

Mandeep Singh et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 4, April- 2013, pg. 177-185

© 2013, IJCSMC All Rights Reserved 185

VII. CONCLUSION
As service consumers, smartphones basically have unique properties like they are small and portable. They

are personal devices with various sensors. However, these smart phones have limitations, for example, small
bandwidth, loss connectivity and less process power. On the hand, the existing services are normally designed
for stationary clients. For example, SOAP is a protocol which involves a lot of XML parsing. To overcome the
limitations, this paper presents the Middleware for the mobile based architecture for connecting mobile device
to the existing Cloud Services.

The proposed mobile client design is mobile platform independent. The mobile client provides an interface

for users to define services and consume them through the middleware. It interacts with the middleware through
RESTful WS interface. The mobile client has been implemented on Android platform. The smartphone based
design involves native as well as browser based applications. For better compatibility, the interface can be
implemented on embedded browser with HTML, CSS and JavaScript, while the actual client component is
implemented in platform dependent language, the server side scripts can run on the application server..

The middleware provides a medium for the smartphones to access the Cloud Services. To support existing

SOAP web services, the middleware does the protocol transformation from the SOAP to RESTful Web services
and XML message to RJSON format. The middleware also provides result optimizations which extract the
required data from the original service results.

REFERENCES

[1] M.A. Vouk, “Cloud computing: Issues, research and implementations,” Information Technology Interfaces, 2008.
ITI 2008. 30th International Conference on, 2008, pp. 31–40.

[2] E. Oliver, “A survey of platforms for mobile networks research,” SIGMOBILE Mob. Comput. Commun. Rev., vol.
12, 2008, pp. 56–63.

[3] M. Al-kistany, Sumi, “Adaptive wireless thin-client model for mobile computing,” Wirel. Commun. Mob. Comput.,
vol. 9, 2010, pp. 47–59.

[4] M. Satyanarnynnan, “Mobile computing,” Computer, vol. 26, 1993, pp. 81-82.
[5] D.E. Bakken and M. Api, Middleware, 2001.
[6] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum, “Programming languages for distributed computing systems,” ACM

Comput. Surv., vol. 21, 1989, pp. 261–322.
[7] W. Emmerich, “Software engineering and middleware: a roadmap,” ICSE '00: Proceedings of the Conference on

The Future of Software Engineering, New York, NY, USA: ACM, 2000, pp. 117–129.
[8] A. Uribarren, J. Parra, J.P. Uribe, M. Zamalloa, and K. Makibar, “Middleware for Distributed Services and Mobile

Applications,” InterSense '06: Proceedings of the first international conference on Integrated internet ad hoc and
sensor networks, New York, NY, USA: ACM, 2006.

[9] T. Phan, R. Guy, and R. Bagrodia, “A Scalable, Distributed Middleware Service Architecture to Support Mobile
Internet Applications,” WMI '01: Proceedings of the first workshop on Wireless mobile internet, New York, NY,
USA: ACM, 2001, pp. 27–33.

[10] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli, “A mobile computing middleware for location- and
context-aware internet data services,” ACM Trans. Internet Technol., vol. 6, 2006, pp. 356–380.

[11] Feda AlShahwan, Evaluation of Distributed SOAP and RESTful Mobile Web Services, International Journal on
Advances in Networks and Services, vol 3 no 3 & 4, year 2010.

[12] R. Deters, “SOA's Last Mile-Connecting Smartphones to the Service Cloud,” Cloud Computing, IEEE
International Conference on, 2011, pp. 80-87.

[13] CloudSim: A Framework For Modeling And Simulation Of Cloud Computing Infrastructures And Services :
http://www.cloudbus.org/cloudsim/

[14] REST and Web Services: In Theory and In Practice Paul Adamczyk, Patrick H. Smith, Ralph E. Johnson, Munawar
Hafiz

