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_______________________________________________________________________________________________________

Abstract— The main aim of this project is protocol for secure mining of association rules in horizontally distributed 

databases. The current leading protocol is that of Kantarcioglu and Clifton. Our protocol, like theirs, is based on the Fast 

Distributed Mining (FDM) algorithm of Cheung et al., which is an unsecured distributed version of the Apriori algorithm. 

The main ingredients in our protocol are two novel secure multi-party algorithms — one that computes the union of private 

subsets that each of the interacting players hold, and another that tests the inclusion of an element held by one player in a 

subset held by another. Our protocol offers enhanced privacy with respect to the protocol in. In addition, it is simpler and is 

significantly more efficient in terms of communication rounds, communication cost and computational cost. 
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I. INTRODUCTION 

We study here the problem of secure mining of association rules in horizontally partitioned databases. In that setting, 

there are several sites (or players) that hold homogeneous databases, i.e., databases that share the same schema but hold 

information on different entities. The goal is to find all association rules with support at least s and confidence at least c, for 

some given minimal support size s and confidence level c, that hold in the unified database, while minimizing the information 

disclosed about the private databases held by those players. The information that we would like to protect in this context is not 

only individual transactions in the different databases, but also more global information such as what association rules are 

supported locally in each of those databases. 

That goal defines a problem of secure multi-party computation. In such problems, there are M players that hold private 

inputs, x1, . . . , xM, and they wish to securely compute y = f(x1, . . . , xM) for some public function f. If there existed a trusted 

third party, the players could surrender to him their inputs and he would perform the function evaluation and send to them the 

resulting output. In the absence of such a trusted third party, it is needed to devise a protocol that the players can run on their 

own in order to arrive at the required output y. Such a protocol is considered perfectly secure if no player can learn from his 

view of the protocol more than what he would have learnt in the idealized setting where the computation is carried out by a 

trusted third party. Yao [32] was the first to propose a generic solution for this problem in the case of two players. 
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 The main part of the protocol is a sub-protocol for the    secure computation of the union of private subsets that are held 

by the different players. 

 The most costly part of the protocol and its implementation relies upon cryptographic primitives such as commutative 

encryption, oblivious transfer, and hash functions. 

 In particular, our protocol does not depend on commutative encryption and oblivious transfer (what simplifies it 

significantly and contributes towards much reduced communication and computational costs). While our solution is 

still not perfectly secure, it leaks excess information only to a small number (three) of possible coalitions. 

II. BACKGROUND 

The FDM algorithm violates privacy in two stages: In, where the players broadcast the item sets that are locally 

frequent in their private databases, and in, where they broadcast the sizes of the local supports of candidate item sets. 

Kantarcioglu and Clifton [proposed secure implementations of those two steps. 

 

 

 

A. Detailed description 

In Phase 0 , the players select the needed cryptographic primitives: They jointly select a commutative cipher, and each player 

selects a corresponding private random key. In addition, they select a hash function h to apply on all itemsets prior to 

encryption. It is essential that h will not experience collisions on Ap(Fk−1s ) in order to make it invertible on Ap(Fk−1s ). 

Hence, if such collusions occur (an event of a very small probability), a different hash function must be selected. At the end, the 

players compute a lookup table with the hash values of all candidate itemsets in Ap(Fk−1s ); that table will be used later on to 

find the preimage of a given hashvalue.  

In Phase 1 (Steps 6-19), all players compute a composite encryption of the hashed sets Ck,m s , 1 ≤ m ≤ M. First (Steps 6-12), 

each player Pm hashes all itemsets in Ck,ms and then encrypts them using the key Km. (Hashing is needed in order to prevent 

leakage of algebraic relations between itemsets, see [18, Appendix].) Then, he adds to the resulting set faked itemsets until its 

size becomes |Ap(Fk−1 s )|, in orderto hide the number of locally frequent itemsets that he has.(Since Ck,ms ⊆ Ap(Fk−1s ), the 

size of Ck,ms is bounded by |Ap(Fk−1s )|, for all 1 ≤ m ≤ M.) We denote the resulting set by Xm. Then (Steps 13-19), the 

players start a loop of M − 1 cycles, where in each cycle they perform the following operation: Player Pm sends a permutation 

of Xm to the next player Pm+1; Player Pm receives from Pm−1 a permutation of the set Xm−1 and then computes a new Xm as 

Xm = EKm(Xm−1). At the end of this loop, Pm holdsan encryption of the hashed Ck,m+1 s using all M keys. Due to the 

commutative property of the selected cipher, Player Pm holds the set {EM(· · · (E2(E1(h(x)))) · · · ) : x ∈ Ck,m+1s }. 

In Phase 2 (Steps 21-26), the players merge the lists of encrypted itemsets. At the completion of this stage P1 holdsthe union set 

Cks = _M m=1 Ck,m s hashed and then encrypted by all encryption keys, together with some fake itemsets that were used for 

the sake of hiding the sizes of the sets Ck,m  s ; those fake itemsets are not needed anymore and will be removed after 

decryption in the next phase. 

The merging is done in two stages, where in the first stage the odd and even lists are merged separately. As explained 

in [18, Section 3.2.1], not all lists are merged at once since if they were, then the player who did the merging (say P1)would be 

able to identify all of his own encrypted itemsets (as he would get them from PM) and then learn in which ofthe other sites they 

are also locally frequent. 

III. RELATED WORK 

Previous work in privacy preserving data mining has considered two related settings. One, in which the data owner and 

the data miner are two different entities, and another, in which the data is distributed among several parties who aim to jointly 

perform data mining on the unified corpus of data that they hold. In the first setting, the goal is to protect the data records from 

the data miner. Hence, the data owner aims at anonymizing the data prior to its release. The main approach in this context is to 

apply data perturbation [2], [11]. The idea is that Fig. 1. Computation and communication costs versus the number of 

transactions N the perturbed data can be used to infer general trends in the data, without revealing original record information. 

In the second setting, the goal is to perform data mining while protecting the data records of each of the data owners 

from the other data owners. This is a problem of secure multiparty computation. The usual approach here is cryptographic rather 

than probabilistic. Lindell and Pinkas [22] showed how to securely build an ID3 decision tree when the training set is distributed 

horizontally. Lin et al. [21] discussed secure clustering using the EM algorithm over horizontally distributed data. The problem 

of distributed association rule mining was studied in [19], [31], [33] in the vertical setting, where each party holds a different set 

of attributes, and in [18] in the horizontal setting. Also the work of [26] considered this problem in the horizontal setting, but 

they considered large-scale systems in which, on top of the parties that hold the data records (resources) there are also managers 

which are computers that assist the resources to decrypt messages; another assumption made in [26] that distinguishes it from 

[18] and the present study is that no collusions occur between the different network nodes — resources or managers.  
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The problem of secure multiparty computation of the union of private sets was studied in [7], [14], [20], as well as in 

[18]. Freedman et al. [14] present a privacy-preserving protocol for set intersections. It may be used to compute also set unions  

through set complements, since A ∪ B = A ∩ B. Kissner and Song [20] present a method for representing sets as polynomials, 

and give several privacy-preserving protocols for set operations using these representations. They consider the threshold set 

union problem, which is closely related to the threshold function (Definition 2.1). The communication overhead of the solutions 

in those two works, as well as in [18]’s and in our solutions, depends linearly on the size of Fig. 3. Computation and 

communication costs versus the support threshold s the ground set. However, as the protocols in [14], [20] use homomorphic 

encryption, while that of [18] uses commutative encryption, their computational costs are significantly higher than ours. The 

work of Brickell and Shmatikov [7] is an exception, as their solution entails a communication overhead that is logarithmic in the 

size of the ground set. However, they considered only the case of two players, and the logarithmic communication overhead 

occurs only when the size of the intersection of the two sets is bounded by a constant. The problem of set inclusion can be seen 

as a simplified version of the privacy-preserving keyword search. In that problem, the server holds a set of pairs {(xi, pi)}ni =1, 

where xi are distinct ―keywords‖, and the client holds a single value w. If w is one of the server’s keywords, i.e., w = xi for 

some 1 ≤ i ≤ n, the client should get the corresponding pi.  

In case w differs from all xi, the client should get notified of that. The privacy requirements are that the server gets no 

information about w and that the client gets no information about other pairs in the server’s database. This problem was solved 

by Freedman et. al. [13]. If we take all pi to be the empty string, then the only information the client gets is whether or not w is 

in the set {x1, . . . , xn}. Hence, in that case the privacy-preserving keyword search problem reduces to the set inclusion problem. 

Another solution for the set inclusion problem was recently proposed. 

IV. PERFORMANCE EVALUATIONS 

 

We describe the synthetic database that we used for our experimentation. In Section VI we explain how the database 

was split horizontally into partial databases. The results are given in Section VI 

 

A. Synthetic database generation 

The databases that we used in our experimental evaluation are synthetic databases that were generated using the same 

techniques that were introduced in [1] and then used also in subsequent studies such as [8], [18], [23]. Table 1 gives the 

parameter values that were used in generating the synthetic database. The reader is referred to [8], [18], [23] for a description of 

the synthetic generation method and the meaning of each of those parameters. The parameter values that we used here are 

similar to those used in [8], [18], [23]. Parameter Interpretation Value N Number of transactions in the whole database 500,000 

L Number of items 1000 At Transaction average size 10 Af Average size of maximal potentially large itemsets 4 Nf Number of 

maximal potentially large itemsets 2000 CS Clustering size 5 PS Pool size 60 Cor Correlation level 0.5 MF Multiplying factor 

1800. Parameters for generating the synthetic database. 

 

B. Distributing the database 

Given a generated synthetic database D of N transactions and a number of players M, we create an artificial split of D 

into M partial databases, Dm, 1 ≤ m ≤ M, in the following manner: For each 1 ≤ m ≤ M we draw a random number wm from a 

normal distribution with mean 1 and variance 0.1, where numbers outside the interval [0.1, 1.9] are ignored. Then, we normalize 

those numbers so that _M m=1 wm = 1. Finally, we randomly split D into m partial databases of expected sizes of wmN, 1 ≤ m ≤ 

M, as follows: Each transaction t ∈ D is assigned at random to one of the partial databases, so that Pr(t ∈ Dm) = wm, 1 ≤ m ≤ M. 

 

C. Experimental setup 

We compared the performance of two secure implementations of the FDM algorithm (Section 1.1.2). In the first 

implementation (denoted FDM-KC), we executed the unification step (Step 4 in FDM) using Protocol UNIFI-KC, where the 

commutative cipher was 1024-bit RSA [25]; in the second implementation (denoted FDM) we used our Protocol UNIFI, where 

the keyed-hash function was HMAC [4]. In both implementations, we implemented Step 5 of the FDM algorithm in the secure 

manner that was described in Section 3. We tested the two implementations with respect to three measures:  

1) Total computation time of the complete protocols (FDMKC and FDM) over all players. That measure includes the Apriori 

computation time, and the time to identify the globally s-frequent itemsets, as described in Section 3. (The latter two procedures 

are implemented in the same way in both Protocols FDM-KC and FDM.)  

2) Total computation time of the unification protocols only (UNIFI-KC and UNIFI) over all players. 

3) Total message size. We ran three experiment sets, where each set tested the dependence of the above measures on a different 

parameter: N — the number of transactions in the unified database. 
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V. CONCLUSIONS AND FUTURE WORK 

We proposed a protocol for secure mining of association rules in horizontally distributed databases that improves 

significantly upon the current leading protocol in terms of privacy and efficiency. One of the main ingredients in our proposed 

protocol is a novel secure multi-party protocol for computing the union (or intersection) of private subsets that each of the 

interacting players holds. Another ingredient is a protocol that tests the inclusion of an element held by one player in a subset 

held by another. Those protocols exploit the fact that the underlying problem is of interest only when the number of players is 

greater than two. One research problem that this study suggests was described in Section 3; namely, to devise an efficient 

protocol for inequality verifications that uses the existence of a semihonest third party. Such a protocol might enable to further 

improve upon the communication and computational costs. 

 The second and third stages of the protocol of, as described. Other research problems that this study suggests is the 

implementation of the techniques presented here to the problem of distributed association rule mining in the vertical setting , the 

problem of mining generalized association rules , and the problem of subgroup discovery in horizontally partitioned data. 
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