Available Online at www.ijcsme.com

I nter national Jour nal of Computer Science and M obile Computing

A Monthly Journal of Computer Science and | nformation Technology

ISSN 2320-088X
[JCSMC, Vol. 2, Issue. 8, August 2013, pg-13

RESEARCH ARTICLE|

Backfilling Strategies for Computational
Grid System Load Balancing

Prakash Kumar®, Pradeep Kumar?, Vikas Kumar?
'CSE Department, MTU, India
’CSE Department, MTU, India
3Eurus Internetworks, India

! Prakashkumar .ce@gmail .com; ? pradeep2345in@gmail.com; * vikas kumar sec@gmail.com

Abstract— Grid is distributed computing infrastruate for advanced science and engineering that rumger
the internet, potentially world-wide. Grid is highl controlled, with resource providers and consumers
defining what is shared and the conditions of shagi. The goal of Grid computing is to create the dsibon of

a simple but large and powerful self-managing vieticomputer out of a large collection of connected
heterogeneous systems sharing various combinatiofigesources. Backfill is a scheduling optimizatio
which allows a scheduler to make better use of &fslie resources by running jobs out of order. Baikf
locates jobs to run from throughout the idle job que, it tends to moderate the influence of the job
prioritization a site has chosen and thus may negaome desired workload steering attempts throulgis t
prioritization. Essentially filling in holes in noé space, backfill tends to favor smaller and shortanning
jobs more than larger and longer running ones.

Key Terms: - Grid computation; Load balancing; Sathaling; Cluster; Throughput, Conservative
Backfilling algorithm; GAP Search

I. INTRODUCTION

Concepts of Grid Computing explores an emergindirietogy that enables large-scale resource sharing
problem solving within distributed, loosely coordiad groups sometimes termed virtual organizati@rid
Computing is a cost efficient solution with respexisuper Computing. Grid distinguish Grid compgtinom
conventional high performance computing system#$ g cluster computing is that grids tend to beemor
loosely coupled, heterogeneous, and geographidiiyersed. A grid job that enters the system viiit fbe
dispatched to a specific site by the grid schedwead then be further allocated to a processorhbyldcal
scheduler [1]. Research into scheduling for thd grivironment can be broadly classified into twiegaries i.e.
Application-level scheduling, the focus is on apmioes to optimize the performance of a single ijoh grid
environment, and Job-level scheduling, the focusristhe performance optimization across a collectd
independent jobs[4]. The notion of Grid computingeads well beyond the traditional Parallel andtiiisited
Computing Systems, as it involves various resoutheas belong to different administrative domaingl ame
controlled by domain specific resource managemelitips [5]. In order to utilize these dynamicoasces and
jobs optimally, a scheduling strategy should bes@blcontinually adapt to the changes and propdslyibute
the workload and data amounts scheduled to eack fid. The end goal of the work is to provide an
integrated Grid application development solutioattimcorporates activities such as compilation,edciing,
staging of binaries and data, application launcidl, monitoring of application progress during exemuf15].
Enabling backfill allows the scheduler to startestHower-priority jobs so long as they do not getae highest
priority job. Enabling backfill increases systenilizsition by about 25% and improves turnaround tipyean

© 2013, IJCSMC All Rights Reserved 7

Prakash Kumagt al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 8, August- 2013, pg. 7-13

even greater amount. GridSim is the shape of hgéereous, multitasking Grid resources, calendarchase
deadline and budget based constraints. It alsovsllevaluating various scheduling policies in a king
simulation. Each Grid task is implemented as arsépahread in the Java Virtual Machine [6].

II. PREVIOUSWORK

The First Come First Served (FCFS) algorithm hawen insufficient and can cause severe fragmemtatio
when resources are not available for large gangdnsidering Random search, the next job to Ibedaled
is randomly selected among all jobs that are subdhibut not yet started, therefore the schedulrois-
deterministic. No job is preferred, but jobs sultenitearlier have a higher probability to be stattetbre a
given time instant [2]. The greedy multisite scHedyalgorithm scales well while the optimal oneedonot
have polynomial time complexity. Initial experimahtesults show that the adaptability of an aldponitis very
important to its performance, as shown by compadptimal and greedy adaptive algorithms with th@-no
adaptive version [4]. Proposed a distributed loaléuiticing model which takes into account the hetemedy of
the resources that is completely independent froynpdaysical architecture Grid [6]. Co-allocatiogatithm to
reduce the total time to release user jobs andingaiime in the global queue, maximize the resosirce
utilization rate and load the balance among theure®s providers, and compared our results with§SEDF
algorithms [7]. Different simulation experimentgrerformed to compare different aspects of sclvegluling
different types of job, resources and workloads €kecution results indicate the effect of schedudipproach
used on efficient execution of grid jobs, succedg®rof jobs with QoS requirement and resourcezatilon and
load balancing of grid system [9].

I1l. SCHEDULING ARCHITECTURE

The scheduler is made of two main components: teduler and the Resource Manager. Each of them has

its own functionality; the scheduler is in chardeemistering jobs submitted and put them in a guaccording

to a scheduling policy. Then, it has to ask fooweses at the Resource Manager, and execute joliisose
retrieved resources; the Resource Manager (RM)leésrad set of available resource available for saliregl
jobs. It benefits from the Proactive Library, sedn handle resources from LAN, on cluster of wiatksns, on

P2P desktop Grids, or on Internet Grids. Resouraadder provides the scheduler with resources, dicgpto
criteria (Operating System, dynamic libraries, MeyioResources, at Proactive point of view, aréecahodes.
Resource Manager therefore supplies Proactive ndéolethe Scheduler. We distinguish centralized and
decentralized scheduling architectures (Shown g 1).

CENTRALIZED STRATEGIES DECENTRALIZED STRATEGIES

ALANACER NODE MANAGER NODE

EXFECUTER NODES
EXECTUTOR NODES

Figure 1: Centralized and De-Centralized Strategies

In a centralized environment all parallel machiaes scheduled by a central instance. Informatiorthen
state of all available systems must be collected.liEhis concept obviously does not scale well wittreasing
size of the computational grid. The central schedoiay prove to be a bottleneck in some situat{ers if a
network error cuts of the scheduler from its resesy system availability and performance may bectdtl). As
an advantage, the scheduler is conceptually alpeotuce very efficient schedules, because thealdanstance
has all necessary information on the availableuness. The proposed algorithm consists of two patst of
the local jobs are scheduled on the local machitie avlist-scheduling algorithm working in batch&toreover,
the scheduler attempts to migrate jobs which wanisk their due dates when executed locally. Anrétlyn
for handling such migration requests from the nremes point of view. Although migration improveseth

© 2013, IJCSMC All Rights Reserved 8

Prakash Kumagt al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 8, August- 2013, pg. 7-13

performance of the originator, migrated jobs caasflaly delay local jobs and, consequently, worsenlocal

criterion [16].
N - /' 11
T L1
| |

\.
=

___'_,.Q
o i*

Site 1

Site 2

>

S Grid Scheduler
I.5: Local Scheduler

BE0O|0e00

Figure 2: The Queuing M odel

The workload consists of two different job typesnpeting for the same resources: local jobs andjghid.
Therefore, there are three arrival streams in yistem: one at the GS (grid jobs) and one insidé eéthe two
sites (local jobs). A local job consists of a sentfsk, while a grid job (gang) consists of a nundfeparallel
tasks that must be processed simultaneously (ShoviAigure 2). The mean inter-arrival time of garaysl
locals is exponentially distributed with a mearldfl for the locals in sitel, A2 for the locals in site2 andi®/
for the gangs, whergl, 22 andA3 are the arrival rates for locals in sitel, sigg?l gangs, respectively. We
assume that the arrival rates in both sites aresdhse {1=12=4), and that the arrival rate of grid jobs is much
lower than that of local jobd3 << 1) [1]. Super scheduling in computational gridsasifitated by specialized
super schedulers such as Grid Federation Agent [5].

IV. LOAD BALANCING STRATEGIES

In accordance with the structure of the proposedehave distinguish between two load balancing leve
Intra-cluster(Inter-worker nodes) and Inter-clusters (Intra-Grioad balancing. We suppose that computing
elements have different characteristics (speedpgéor sending load information); Tasks are indefent; it is
natural to have different communication costs betwelusters, because of the heterogeneity of WANsitra-
cluster communication costs are the same, sinde @aster has a network (LAN) providing similar blaidths
for all its worker nodes. In contrast to the inttaster level, we should consider the communicatiost among
clusters. Knowing the global state of each clugter,overloaded cluster manager can distributeviesloaded
tasks between under-loaded clusters [6, 8].

First Come First Serve (FCFS):

First Come First Serve (FCFS) or also known ast kirsFirst out (FIFO) is the simplest and the most
fundamental of grid scheduling that involves clisatver interaction. In grid scheduling, FCFS pplicanages
the jobs based on their arrival time, which meduas the first job will be processed first withodher biases or
preferences.

Shortest Job First (SJF)

Shortest job First (SJF) also known as Shortest Nekt (SIN) or Shortest Process Next (SPN) is a
scheduling technique that selects the job withsthallest execution time. The jobs are queued wighsimallest
execution time placed first and the job with thedest execution time placed last and given the $vyweority
[11].

Earliest Gap-Earliest Deadline First Rule (EG-EDF):

It places a new submitted job into the existingesttite to build the schedule incrementally. It pésnois to
compute a new job scheduling plan saving runninge tfor scheduling since the new plan is not re-adegb
from scratch. To do this, it is necessary to chasgod place in the schedule for the job beingdacled;
otherwise resource utilization may drop quickly daehe gapsppearing in the schedule. A gap is considered
to be a period of idle CPU time. A new gap appé&athe schedule every time the number of curreaigilable

© 2013, IJCSMC All Rights Reserved 9

Prakash Kumagt al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 8, August- 2013, pg. 7-13

CPUs by the machine is lower than the number of €Riduested by a job. In such situation job haketo
placed in the schedule to a time when a suffiarembber of CPUs is available. Gaps can also appbkanthere
are more CPUs than required by the jobs [3].

Backfilling Strategies:

Backfill is a scheduling optimization which allovasscheduler to make better use of available ressuny
running jobs out of order [14]. Schedulers emplgylmackfilling algorithms in Distributed-Memory PHeh
System have been found to improve system utilinatind job response time by allowing smaller jolzsmfr
back of the waiting queue to execute before thgelajobs that have arrived earlier. By arrangingsjin a
specific order, we reduce internal fragmentatiod anprove utilization of the system. Backfillinggakrithms
also overcome the problem of starvation and walspraressing resources exhibited by algorithm Bkertest
Job First (SJF). Conservative and aggressive bBiegfalgorithms usually use a single queue anaigruser
priorityl. Utilization of the system resources deg® on how the jobs are packaged and the ordenenf t
execution. We have implemented the backfilling shieg algorithms using multiple-queue and dynamic
algorithms using two look-ahead strategies [12].

Rescheduling Ar chitecture:

Over time, other applications may introduce loadhi& system or application requirements may chafge.
sustain good performance for longer running appboa, the schedule may need to be modified during
application execution.

| e e i s T - T _________
™ 1 7 ™ I r ™
Processor ; Processor i | Processor
—— 1
Application I Application | ' Application
MPI rank i MPI rank I : MPI rank
= 1
Rescheduling | J Rescheduling | |__ 4 — Rescheduling
Actuator Actuator Actuator
App IIRESDIJI"CE App [|Resource App [|Resourc
Sensorj|Sensor Sensor]|Sensor
| q y q Sensor]]Sensor

T o i i s i imed]

Performance Cuntract Cuntral:t Violation
C Rescheduler

Figure 3: Re-scheduling Ar chitecture

Rescheduling involves a number of complexities se#n in launch-time scheduling. First, while neatly
parallel applications support some form of launiofetscheduling (selection of machines at a minimunajy
few applications have built-in mechanisms to suppuoigration or dynamic load balancing. Second, for
resource monitoring we have to differentiate betw@eocessors on which the application is running an
processors on which the application is not runnMgasurements from resource monitors such as NW$ CP
sensors cannot be directly compared between aciwk inactive processors. Third, the overheads of
rescheduling can be high: monitoring for the neeteschedule is an ongoing process and, when hagsling
event is initiated, migration of application proses or reallocation of data can be very expengpeations.
Without careful design, rescheduling can in faat lapplication performance.

V. PROBLEM STATEMENT

Workload and resource management are two esséatietions provided at the service level of the Grid
software infrastructure. The focus of our studyadsconsider factors which can be used as charatiterifor
decision making to initiate Load Balancing. LoadldBeing is one of the most important factors whozm
affect the performance of the grid application. Tinain objective of this thesis is to propose aicfiit Load
Balancing Algorithm for Grid environment. Main difence between existing Load Balancing algorithm an
proposed Load Balancing is in implementation okéhpolicies: Information Policy, Triggering Poliend
Selection Policy. The paper aims is to design aedeldpment of a performance efficient Load Balagcin
algorithm which overcomes the shortcomings of tingemt state of the art in the context.

© 2013, IJICSMC All Rights Reserved 10

Prakash Kumaet al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 8, August- 2013, pg. 7-13

VI. PROPOSED METHODOLOGY

The choice of a load balancing algorithm for a Geidvironment is not always an easy task. Various
algorithms have been proposed in the literaturd, @ach of them varies based on some specific apiolic
domain. Some strategies are focused towards handéita-heavy tasks, while others are more suitgétallel
tasks that are computation heavy. While many difietoad balancing algorithms have been propobede tare
four basic steps that nearly all algorithms havecommon: Monitoring workstation performance (load
monitoring); Exchanging this information between rkatations (synchronization); Calculating new
distributions and making the work movement deci@igmalancing criteria); Actual data movement (job
migration). The approach aim is, all the jobs stidug executed which are submitted to central sdbeslby
sending the jobs which cannot be executed immeditdethe job pool and by implementing special piels on
all those jobs which cannot be executed immedigfeB]. Within the context of scheduling resourcaesai
computational grid, we supplement the single andtipbe-queue backfilling policies by consideringdvetatic
job priority levels. We consider those jobs subetitoy local users to have high priority and thosesj
submitted externally (i.e., from elsewhere in tloenputational grid) to have low priority [10]. Theri@Sim
toolkit provides a comprehensive facility for siratibn of different classes of heterogeneous ressynasers,
applications, resource brokers, and schedulersaritbe used to simulate application schedulersifagle or
multiple administrative domains distributed compgtsystems such as clusters and Grids.

dobLoader Scheduler Machine Loader
. ComplexGridlet —_—m— Gridies ource Creates
Dynanically g GridResources
reads jobs ComplexGridlet SeH tachines
Eig:;o rkload » Camplextridlet » A Advance dSpaceShared
Communication I i Machine Machine
represents job Machine Machine
Machine
) JI GridResource
]l
Visuali zator ResultCollector
y Rdvance dSpaceShar ed
‘_“ " 'y
Draws graphs Stores data for Scheduling Mac:h:_me l'[ach:_me FailureLoader
Visualizator and Machine Machine ’
: Machine
generates final P Simlates maghlne
results failures during
1..8 Queue(s) simulation
o i ERAT RidvancedSpaceShared

Machine Machine
Machine Nachine
Machine ...

Schedule

Simulation
results

Figure 4: The process of simulation using GridSim Simulator

Backfilling improves resource utilization by allavgi small job to fill in those gaps. Job which isvéy in the
gueue is moved to the idle machines without defayhe execution of the job at the top of the quélee
algorithms works by rearrange existing jobs queasel on increasing order of the execution timenefjobs.
Candidate job to be moved forward is the one thatgo in the queue [11].

VII. EXPERIMENTAL RESULTS

To implement the proposed Load Balancing Algoritlamapplication has been developed, which is erecut
in simulated grid environment. Java language offseveral features that facilitate with easiness the
development and deployment of a software environrfenGrid computing. As Grid is network based java
network based features are very useful to develog &pplication. Java’s network-centric approachd &s
built-in support for mobile code enable the diaitibn of computational tasks to different computkatforms.

© 2013, IJCSMC All Rights Reserved 11

Prakash Kumagt al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 8, August- 2013, pg. 7-13

Cluster usage per day %) istar 1.
sl .

tlster 7.,

tlster 13..

olster 8.
I tlster 1.

0 § i 1 il i n thter 2.

el ister 9.,
Figure 5: Percentage of Cluster usage per day in previousalgorithm

Cluster usage per day %] tlister 1.
e 3,

tluster 7.

tlister 13..

AT tluster
i NEREN WA Tr] tlister 1,

Bl 3 il 4 5l tuster 2

a5 tster 9.
Figure 6: Percentage of Cluster usage per day in proposed algorithm

The GridSim toolkit provides a comprehensive fégifior simulation of different classes of heterogens
resources, users, applications, resource brokedssehedulers. It can be used to simulate appiicatthedulers
for single or multiple administrative domains distited computing systems such as clusters and Grids
Average machine usaoge per hour [%] in day =1

Average machine usage per hour [26] in day = 33

s 100

ag = |

g0 -

F . |

B0 - o]

50 2 |

40 -

20)

20 20

10 10 4

I T e O e e e
6 3 & 4 12 15 18 21 24 o 3 B 9 13 485 18 2 24

hours EDF hours Backfilling

Figure 7: Percentage of Average machine usage per hour

The experimental result shows the comparison betweevious algorithm and proposed algorithm with
respect to percentage of cluster uses per day amder of waiting/running jobs per day. Figure 5 &nshows
the result of proposed algorithm is better thanghst. Figure 7 shows the improvement of the peagenof
average machine usage per hour.

VIII. CONCLUSIONSAND FUTURE SCOPE

Grid Computing is definitely a promising tendenoysolve high demanding applications and all kinfls o
problems. Objective of the grid environment is thiave high performance computing by optimal usafe
geographically distributed and heterogeneous ressulWe analyzed existing Load Balancing algoritmmd
proposed an enhanced algorithm which more effigieémplements three out of five policies implemehie
existing Load Balancing algorithm. In future, wellwmprove the performance of grid application kaiso
makes it more powerful, reliable and capable of dliag more complex and large problems in Grid
environment.

© 2013, IJICSMC All Rights Reserved 12

Prakash Kumagt al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 8, August- 2013, pg. 7-13

REFERENCES

[1] Sofia K. Dimitriadou, Helen D. Karatza, "Job Schiéyin a Distributed Syem Using Backfilling witk
Inaccurate Runtime Computations”, International f€mnce on Complex, Intelligent and Software
Intensive Systems, IEEE, 2010.

[2] Volker Hamscher, Uwe Schwiegelshohn, Achim Strétamin Yahyapour, "Evaluation of Job-
Scheduling Strategies for Grid Computing”, ACM mmiztional Workshop on Grid Computing, 2000.

[8] Ranieri Baraglia, Marco Pasquali, Gabriele Capanni@omparison of Multi-Criteria Scheduling
Techniques", Institute of Italian National Resea@duncil, 2008.

[4] Weizhe Zhang, Albert M.K Cheng, Mingzeng Hu, "Msite Co-allocation Algorithms for
Computational Grid", IEEE, 2006.

[5] Rajiv Ranjan, Aaron Harwood, Rajkumar Buyya, "SLAg®d Cooperative Super scheduling Algorithms
for Computational Grids", ACM, Volume 5, Issue Nydust 2006.

[6] Belabbus Yagoubi, Meriem Meddeber, "Distributed d oBalancing Model for Grid Computing",
ARIMA Journal, Vol. 12, Pages 43-60, September 2010

[71 Sid Ahmed Makhlouf, Belabbas Yagoubi, "Co-allocatio Grid Computing using Resources Offers and
Advance Reservation Planning”, Courrier du Sawwayvember 2012.

[8] Ye Huang, Nik Bessis, Peter Norrington, Pierre KergnBeat Hirsbrunner, "Exploring decentralized
dynamic scheduling for grid and clouds using thencwnity-aware scheduling algorithm", Elsevier,
November 2010.

[9] Aditya B patel, "Modeling and Simulation of Grid &eirce Brokering Algorithms", International
Journal of Computer Application, Volume 42, Issué@rch 2012.

[10] Barry G Lawson, Evgenia Smirni, "Multiple-queue R#lding Scheduling with Priorities and
reservations for Parallel Systems", Springer, Va@ws37, 2002.

[11] Zafril Rizal M Azmi, Kamalrulnizam Abu Baker, Moh8&hahir Shamsir, Wan Nurulsafawati Wan
Manan, Abdul Hanan, Abdullah, "Scheduling Grid Jakssng priority Rule Algorithms and Gap Filling
Techniques", International Journal of Advanced Soéeand Technology, Volume 37, December, 2011.

[12] Hasasn rajaei, Mohammad Dadfar, "Comparison of fing Algorithms for Job Scheduling in
Distributed Memory Parallel System", American socier Engineering Education, 2006.

[13] Edi Laxmi, "International Journal of Computer Scderand Management Research”, IJCSMR, Volume
2, Issue 1, January 2013.

[14] David Jackson, Quinun Snell, Mark Clement, "Coregdkithms of the Maui Scheduler", JSSPP,
Springer, Volume 2221, 2001.

[15] Holly Dail, Fran Berman, Henri Casanova, "A decegplscheduling approach for Grid application
development environments", Elsevier, April 2002.

[16] Marchin Krystek, Krzysztof Kurowski, Ariel OleksiakComparison of Centralized and De-centralized
Scheduling Algorithms using GSSIM Simulation Envineent”, Springer, 2008.

© 2013, IJICSMC All Rights Reserved 13

