
Available Online at www.ijcsmc.com

International Journal of Computer Science and Mobile Computing

A Monthly Journal of Computer Science and Information Technology

ISSN 2320–088X

 IJCSMC, Vol. 2, Issue. 8, August 2013, pg.230 – 236

RESEARCH ARTICLE

© 2013, IJCSMC All Rights Reserved 230

A Better Approach for Horizontal
Aggregations in SQL Using Data Sets

for Data Mining Analysis

Y. Chakravarthi1, P. Vindhya2
1M. Tech, Dept. of CSE, ASIT, Gudur, India

2Assistant Professor, Dept. of CSE, ASIT, Gudur, India

1 chakri.yannam@gmail.com, 2 vindhyachandranp@gmail.com

Abstract— To analyzing the data efficiently in Data mining systems are widely using datasets with columns
in horizontal tabular layout. Generally preparing a data set is the more complex task in a data mining
project, require many complex SQL queries, aggregating columns and joining tables. Conventional RDBMS
usually manage tables with vertical form. Aggregated columns in a horizontal tabular layout returns set of
numbers, instead of one number per row. This new class of function is called horizontal aggregations. The
system uses one parent table and different child tables, operations are then performed on the data loaded
from multiple tables. We proposed three fundamental methods .They are SPJ (select-project-join-
Aggregation), CASE, and PIVOT. SPJ based on standard relational algebra operators. CASE is useful to
exploiting the programming case construct. PIVOT is a built-in operator in a commercial DBMS, PIVOT
operator, offered by RDBMS is used to calculate aggregate operations. PIVOT methods are much faster
methods and offer much scalability. Partitioning large set of data, obtained from the result of horizontal
aggregation.

Key Terms: - Aggregation; Data Mining; Data preparation; Structured Query Language (SQL); Pivot

I. INTRODUCTION
Horizontal aggregation is new class of function to return aggregated columns in a horizontal tabular layout.

So many algorithms are required datasets with horizontal layout as input with several records and one variable
per column. Managed large data sets without DBMS support can be a more difficult task. Different subsets of
data points and dimensions are more flexible, easier and faster to do inside a relational database with SQL
queries than outside with alternative tool. Horizontal aggregations can be performed by using operator; it is
easily implemented inside a query processor, like a select, project and join operations. PIVOT operator on
tabular data that exchange rows, enable data transformations useful in data modeling, data analysis, and data
presentation. There are many existing functions and operators for aggregation in Structured Query Language.

 The most commonly used aggregation is the sum of a column and other aggregation operators return the avg,
maximum, minimum or row count over groups of rows. All operations for aggregation have many limitations to
build large data sets for data mining purposes. Database schemas are also highly normalized for On -Line Trans
action Processing (OLTP) systems where data sets that are stored in a relational database or data warehouse. But
data mining, statistical algorithms generally require aggregated data in summarized form. Data mining algorithm
requires suitable input in the form of cross tabular (horizontal) form; the significant effort is required to compute

Y. Chakravarthi et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 8, August- 2013, pg. 230-236

© 2013, IJCSMC All Rights Reserved 231

aggregations for this purpose. Such effort is due to the amount and complexity of SQL code which needs to be
written, optimized and tested. Data aggregation is a process in which information is gathered and expressed in a
summary form, and which are used for purposes. A common aggregation purpose is to getting the more
information about particular groups based on specific variables such as name, age, address, profession, phone
number, or income. Most algorithms require input as a data set with a horizontal layout, with some records and
one dimension or variable per column. That technique is used with models like clustering, classification,
regression and PCA. Dimension used in data mining technique are point dimension.

II. RELATED WORK
SQL extensions are defining aggregate functions for association rule mining. Their optimizations have the

purpose of avoiding the joins to convey unit (cell) formulas, but are not optimized to perform partial
Transposition for each group of result rows. Conor Cunningalam [13] proposed an optimization and Execution
strategies in an RDBMS which uses two operators i.e., PIVOT operator on tabular data that exchange rows and
columns [1], enabled data transformations are useful in data modeling, data analysis, and data presentation.
They can quite easily be implemented inside a query processor system, much like select, project, and join
operator. Such design provides the opportunities for better performance, both during query optimization and
query execution. Pivot is an extension of Group By with an unique restrictions and optimization opportunities,
and this makes it is very simple to introduce incrementally on top of existing grouping implementations. H
Wang.C.Zaniolo [2] proposed a s mall but Complete SQL Extension for Data Streams Data Mining and. This
technique is a powerful database language and system that enables users develop complete data-intensive
applications in SQL by writing new aggregates and table functions in SQL, rather than in procedural languages
as in current Object -Relational systems .

The ATLaS system consist of applications including various data mining functions, that have been coded in
ATLaS SQL, and execute with a modest (20– 40%) performance overhead with respect to the same
applications written in C or C++ languages. This system can handle continuous queries using the schema and
queries in Query Repository. Sarawagi, S.Thomas, R..Agrawal[3] proposed integrating association rule mining
with relational database systems. The Integrating Association rule mining includes several methods. We first
discuss research on extending SQL code for data mining processing. We compare horizontal aggregations with
alternative proposals to perform pivoting. So many proposals are there to extended SQL syntax. The closest data
mining problem associated to OLAP processing is association rule mining [3]. SQL extensions to define
aggregate functions for association rule. Our SPJ method proved horizontal aggregations can be evaluated with
relational algebra, exploiting the outer joins, showing our work is connected to traditional query optimization.
The problems of optimizing queries with outer joins are not new. Optimizing joins by reordering operations and
using transformation rules is studied in [14]. This work does not consider optimizing a complex query that
contains several outer joins on primary keys only, which are basically to prepare data sets for data mining.
Traditional query optimizers are used tree-based execution plan, but there is a work to facilitate advocates the
use of hyper graphs to provide a more comprehensive set of potential plans. This approach is related to SPJ
method. Even while the CASE construct is an SQL feature commonly used in practice optimizing queries that
have a list of similar CASE statements has not been studied in depth before.

III. ADVANTAGES
In horizontal aggregations several are there. The first advantage is horizontal aggregation represent a template

to generate SQL code from a data mining tool. This SQL code reduces manual work in the data preparation
phase in data mining related project. The Second is automatically generating the SQL code, which is more
efficient than an end user written SQL code. The datasets for the data mining projects can be created in less time.
The third advantage is the data sets can be created entirely inside the DBMS.

IV. EXECUTIONS STRATEGIES IN HORIZONTAL AGGREGATIONS
Horizontal aggregations are proposed a new class of functions those aggregate the numeric expressions and

the results are transposed to produce data sets with a horizontal layout. This operation is needed in a number of
data mining tasks, such as data summation and unsupervised classification, as well as segmentation of large
heterogeneous data sets into the small homogeneous subsets those can be easily managed, separately analyzed
and modeled. Then to create datasets for data mining related works, efficient and summary of data will be
needed. This proposed system collect particular needed attributes from the different tables (fact tables) and
displaying the columns in order to create data in the horizontal layout. The main goal of horizontal aggregation
is to define a template to generate SQL code combining aggregation and pivoting (transposition). The second

Y. Chakravarthi et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 8, August- 2013, pg. 230-236

© 2013, IJCSMC All Rights Reserved 232

goal is to extend the SELECT statement with a clause that combines the transposition with aggregation. We

considering the following GROUP BY query in standard SQL that takes a subset ,…, from ,… :

SELECT ,…, , sum (A) FROM , GROUP BY , ;

A. Input Parameters

There are four input parameters in horizontal aggregations. These parameters are generating SQL code:

1. The input table , ,…, .

2. The list of GROUP BY columns ,…, .
3. The column is aggregate (A).

4. The list of transposing columns ,… .

That aggregation query will produce a wide table with m+1 columns (determined in automatically), with one

group for each unique combination of values ,These aggregation query will be produces a wide table with
m+1 columns (determined automatically), with one group for each unique combination of a values are

,…, ,….., Lm and one aggregating value per group (sum(A)).In this order to evaluating the query these
query optimizer taking the three input parameters. The first parameter is input table F(fact). The second one is

the list of grouping columns ,…, . The third parameter is the column to aggregate (A).

B. Example

The bellow fig.1 shows there is a common field K in F and , In , consist of only two distinct values
those are X and Y and these are used to transpose the table. Aggregate operation is used in this sum (). The

values within are repeated,1 appears 3 times, for row 3, 4 and for row 3 and 4 values of D2 is X & Y. The

X and the Y are newly generated columns in .

 F

Fig.1: Example of Horizontal Aggregation

V. HORIZONTAL AGGREGATIONS
We introduce a new class of aggregations that contain related behavior to SQL standard aggregations,

however which are produce tables with a horizontal layout. In contrast, we describe standard SQL aggregations
vertical aggregations since they produce tables with a vertical layout. In Horizontal aggregations just they
require a small syntax extension to aggregate functions that are called in a SELECT statement. Alternatively
horizontal aggregations are used to generate SQL code from a data mining tool to build data sets for data mining
analysis.

A. SQL Code Generation
Our main goal is to define a template to generate the SQL code combining aggregation and

transposition(pivoting).A second goal is to extend the SELECT statement with a clause that combine

K A

1

2

3

4

5

6

7

8

3 X

2 Y

1 Y

1 Y

2 X

1 X

3 X

2 X

9

6

10

0

1

Null

8

7

 A

1 X

1 Y

2 X

2 Y

3 X

Null

10

8

6

17

1

2

3

Null 10

8 6

17 null

Y. Chakravarthi et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 8, August- 2013, pg. 230-236

© 2013, IJCSMC All Rights Reserved 233

transposition with aggregation. Consider the following GROUP BY query in standard SQL that takes a subset

;…; from ;…; :

B. Proposed Syntax in Extended SQL
We must point out the proposed extension represents nonstandard SQL because the columns in the output

table are not known when the query is parsed. We assume F does not change while a horizontal aggregation is
evaluated because new values may create new result columns. Our main goal is to develop efficient evaluation
mechanisms.

C. Example
We are using the above some rules and created horizontal table. Assume we want to summarize sales

information with one store per row for one year sales. In more detail, we need the sales amount broken down by
day of the week, the number of transactions by store per month, the number of items sold by department and
total sales.

Table2

A Multidimensional Data Set in Horizontal Layout, Suitable for Data Mining

D. SQL Code Generation: Query Evaluation Methods
We propose three methods to evaluate horizontal aggregations. The first method is SPJ, it relies only on

relational operations. That is, only doing select, join and aggregation queries; we call it the SPJ method. The
second from relies on the SQL “case” construct; we call it the CASE method. Every table has an index on its
primary key for efficient join processing. We don’t consider additional indexing mechanisms to accelerate query
evaluation. PIVOT operator is third method, It is a built-in operator which are transforms rows to columns
(transposing). Figs .2 and 3 show an overview of the main steps to be explained below (for a sum() aggregation).

SPJ Method
The SPJ method is based on only relational operators. The fundamental concept in SPJ method is to build a

table with vertical aggregation for each resultant column. To produce Horizontal aggregation system must
join all those tables. Two sub-strategies are compute Horizontal aggregation. The first strategy includes direct
calculation of aggregation from fact table. Second one compute the corresponding the vertical aggregation and

store it in temporary table grouping by ,….,LEi, ,….., then can be computed from .To get
system need n left outer join with n+1tables so that all individual aggregations are properly assembled as a set of
n dimensions for each group. The Null value should be set as default value for groups with missing
combinations for a particular group.

INSERT INTO

SELECT . , . ,….., . ,

.A , .A ,……, .A

FROM

LEFT OUTER JOIN

ON . = . AND … . = .

LEFT OUTER JOIN

ON . = . AND …… . = .

LEFT OUTER JOIN

ON . = . AND … . = . ;
It is easy to see that left outer join is based on same columns. This strategy basically needs twice I/O

operations by doing updates rather than insertion.

StoreId SalesAmt
Mon Tue … Sun

CountTransactions
Jan Feb .. Dec

Columns
Dairy meat product

sales

10
30
.
.
.

125 141 140
80 98 88

2011 1807 4200
802 912 1632

54 87 112
42 35 174

25054
13876

Y. Chakravarthi et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 8, August- 2013, pg. 230-236

© 2013, IJCSMC All Rights Reserved 234

CASE Method
In SQL build-in “case” programming construct are available, it returns a selected value rather from a set of

values based on Boolean expression. Queries for can be evaluated by performing direct aggregation from

fact table F and at the same time rows are transposing to produce the .

SELECT DISTINCT
FROM F;

INSERT INTO SELECT , ,…..,LEj,

V(CASE WHEN RI1 = and… = THEN A ELSE null
END) …..

, V(CASE WHEN = and… = THEN A ELSE null END)
FROM F

GROUP BY , , ,…, ;

PIVOT Method
Pivot transforms a series of rows into a series of fewer of rows with additional columns [1]. Data in one

source column is used to determine the new column for a row, and one more source column is used as the data
for that new column. The wide form values can be consider as a matrix of column values, although the narrow
form is a normal encoding of a sparse matrix.

In correct implementation PIVOT operator is used to calculate the aggregations. Individual method to express
pivoting uses scalar sub queries, each one pivoted is created during a separate sub query. PIVOT operator
provides a technique to allow rows to columns dynamically at the time of query compilation and execution. The
example Query of PIVOT method is:

SELECT * FROM (Total bill Tab le PIVOT (SUM
 (amount) for month in
(„Jan, Feb, Mar)) ;
This query will be generate atable with jan, feb and mar as column attribute and the sum of the amount of

particular customer that are stored inside the bill Table. The pivot method is more efficient method compare to
other two methods. Because the pivot operator is internally calculates the aggregation operation and no need to
create extra tables. So operation performed with in this method is fewer compared to other methods.

The variation between the Optimized and UnOptimized will be show in the bellow tables

Fig. 2. The Main steps of methods based on F (unoptimized)

Fig. 3.The Main steps of methods based on FV (optimized)

Y. Chakravarthi et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 8, August- 2013, pg. 230-236

© 2013, IJCSMC All Rights Reserved 235

VI. EXPERIMENTAL EVALUATION
In this experimental evaluation phase, we present the evaluation on a DBMS. We are evaluating the query

optimizations. We compare the three query evaluation methods, and analyzing the time complexity varying
table sizes and output data set dimensionality.

A. Setup: Computer Configuration and Data Sets
We are using the SQL Server V9, Dual Core Processor, running on a DBMS server running at 3.4 GHz, 5GB

of RAM and 1 TB on disk. This SQL code generator is programming in the language of Java and connecting to
the server via JDBC. The PIVOT operator is used as available in the SQL language implementation provided by
commercial DBMS.

B. Query Optimization
Tables 2 analyze the first query optimization, applying to three methods. In this paper our goal was to assess

the acceleration obtained by precomputing a cube and it storing on Fv. If we can see this optimization uniformly
accelerating the all methods. this optimization is provide a different gain, depending on the method: the SPJ
optimization is the best for small n, for PIVOT is large n, and the CASE there is rather a less dramatic
improvement the all across n. The PIVOT is accelerated by our optimization despite the fact it is handled by the
query optimizer. Since this optimization can produce a significant acceleration for this three methods (at least 2
x faster) we will use by default. We noticed the precomputing Fv taking the same time within each method.

TABLE 2

Query Optimization: Precompute Vertical Aggregation in (N= 12M). Times in Seconds
n d SPJ

F

PIVOT

F

CASE

F

1K 7
 12
 25

552 62
845 67
1619 68

121 58
122 62
145 61

119 59
122 64
153 61

100K 7
 12
 25

540 86
856 85
1633 103

131 81
136 77
172 89

247 81
234 80
377 92

1.5M 7
 12

 25

669 230
1051 419
2776 1086

538 157
751 140
1240 161

242 155
322 141
384 150

 C. Comparing Evaluation Methods

Table 3 is comparing the three query optimization methods. Notice that Table 3 is a Summarized version of
the Table 2 shows the best time for each method.

TABLE 3

Comparing Query Evaluation Methods (All with Optimization computing Fv) Times in Seconds
N n d SPJ PIVOT

CASE
12M 1K 7

 12
 25

62 58 59
67 62 64
68 61 61

12M 100K 7
 12
 25

86 81 81
85 77 80
103 89 92

12M 1.5M 7
 12
 25

230 157 155
419 140 141
1086 161 150

VII. CONCLUSION
We are introduced a new class of extended aggregate functions, called a horizontal aggregations. Which are

help to preparing datasets for OLAP cube exploration and data mining. In particularly, horizontal aggregations
are useful to create data sets with a horizontal layout. Mainly a horizontal aggregation returns a set of numbers
instead of one number per each group. For a query optimization perspective, we are proposed the three

Y. Chakravarthi et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 8, August- 2013, pg. 230-236

© 2013, IJCSMC All Rights Reserved 236

fundamental query evaluation methods. The first method is SPJ. It relies on standard relational operators. The
second is CASE. It relies on the case construct. It shows the indexes of the tables. PIVOT is the last method.
The pivot is a built in operator. Generally PIVOT operator is shows the table in two ways (Narrow, wide tables).
It is a built-in operator in a commercial database. SPJ method is important from a theoretical point of view
because it is based on select, project and join queries. Both CASE and PIVOT evaluation methods are
significantly faster than the SPJ method.

REFERENCES

[1] C. Cunningham, G. Graefe, and C. A. Galinda, “PIVOT and UNPIVOT: Optimization and
Execution Strategies in an RDBMS,” proc. 13th int’l conf. Very Large Data Base (VLDB ‘04), pp, 998-
1009,2004.
[2] H.Wang, C.Zaniolo, and C.R. Luo, “ATLAS: A Small ButComplete SQL Extension for Data Mining
and Data Streams,” proc. 29th Int’l Conf. Very Large Data Bases (VLDB ‘03) , pp, 1113-1116, 2003.
[3] S.Sarawagi, S.Thomas, and R. Agrawal, “Integrating Association Rule Mining with Relational
Database System: Alternatives and Implications,” proc. ACM SIGMOD Int’l Conf. Management of ata
(ZIGMOD’98), pp. 343-354, 1998.
[4] G.Graefe, U.Fayyad and S. Chaudhuri. On the Efficient Gathering of Sufficient Statistics for
Classification from Large SQL Databases. In Proc. ACM Conf. Knowledge Discovery and Data Mining
(KDD’98), pp. 204-208, 1998.
[5] J. Gray, A. Bosworth, A. Layman and H. Pirahesh. A Relational Aggregation Operator Generalizing
Group-By ,Cross-Tab and Sub Total. In ICDE Conference,pages 152-159, 1996.
[6] J.Han and H. Kamber, Data Mining: Concepts and Techniques, first ed. Morgan Kaufmann,2001.
[7] J. Luo, J.F. Naughton, C.J, Ellmann, and M .Watzke. Locking Protocols for Materialized Aggregate
Join Views. IEEE Transactions on Knowledge and Data Engineering (TKDE), 17 (6): 796-807, 2005.
[8] C.Ordonez and S. Pitchaimalai. Batesian Classifiers Programmed in SQL.IEEE Transactions on
Knowledge and Data Engineering (TKDE),22(1): 139-144, 2010.
[9] C. Ordonez and Zhibo Chen, “Horizontal Aggregation in SQL to Prepare Data Sets for Data Mining
Analysis,” IEEE Trans. On Knowledge and Data Engineering (TKDE), 1041-4347/$26.00, 2011.
[10] G.Bhargava, P. Goel, and B.R. Iyer, “Hypergraph Based Recordings of Outer Join Queries with
Complex Predicates,” Proc. ACM SIGMOD Int’l Conf. management of Data (SIGMOD ‘95), pp.304-
315, 1995.
[11] C. Galindo-Leraria and A. Rosenthal, “Outer Join Simplication and Reordering for Query
Optimization,” ACM Trans. Database Systems, vol. 22, no. 1, pp. 43-73, 1997.
[12] C. Ordonez, “Integrating K-Means Clustering with a Relational DBMS Using SQL,” IEEE Trans.
Knowledge and Data Eng., vol. 18,no. 2, pp. 188-201,Feb.2006

