Abstract: Data mining is defined as the process in which useful information is extracted from the raw data. In order to acquire essential knowledge it is essential to extract large amount of data. This process of extraction is also known as misnomer. Currently in every field, there is large amount of data is present and analyzing whole data is very difficult as well as it consumes a lot of time. The prediction analysis is most useful type of data which is performed today. To perform the prediction analysis the patterns needs to generate from the dataset with the machine learning. The prediction analysis can be done by gathering historical information to generate future trends. So, the knowledge of what has happened previously is used to provide the best valuation of what will happen in future with predictive analysis. Crop production analysis is one of the applications of prediction analysis. The techniques which are designed so far the machine learning techniques. The machine learning techniques are applied with the feature extraction. In this paper, the machine learning techniques are reviewed in terms of technical description and outcomes.

KEYWORDS: Classification, Prediction Analysis, Wheat Production, naïve bayes

Introduction
Data mining is defined as the process in which useful information is extracted from the raw data. In order to acquire essential knowledge it is essential to extract large amount of data. This process of extraction is also known as misnomer. Currently in every field, there is large amount of data is present and analyzing whole data is very difficult as well as it consumes a lot of time. This present data is in raw form that is of no use hence a proper data mining process is necessary to extract knowledge [1]. The process of extracting raw material is characterized as mining. This is a world where having a lot of information leads to power and success and this is possible only because of sophisticated technologies such as satellites, computers. With the advent in the technology in the mass digital storage and computers it becomes easy to handle large amount of information by which different types of data is stored. The most important culture being followed in India since ancient times is agriculture. The crops were cultivated by the people in ancient times within their own land areas such that they could fulfill their own
requirements. Thus, cultivation has been followed ever since and all the living beings have been dependent on this culture. Therefore, the natural crops are cultivated and have been used by many creatures such as human beings, animals and birds [2]. The greenish goods produced in the land which have been taken by the creature leads to a healthy and welfare life. Since the invention of new innovative technologies and techniques the agriculture field is slowly degrading. Due to these, abundant invention people are been concentrated on cultivating artificial products that is hybrid products where there leads to an unhealthy life. Nowadays, modern people don’t have awareness about the cultivation of the crops in a right time and at a right place. Because of these cultivating techniques the seasonal climatic conditions are also being changed against the fundamental assets like soil, water and air which lead to insecurity of food. By analyzing all these issues and problems like weather, temperature and several factors, there is no proper solution and technologies to overcome the situation faced by us. In India there are several ways to increase and improve the crop yield and the quality of the crops. Data mining also useful for predicting the crop yield production. Generally, data mining is the process of analyzing data from different perspectives and summarizing it into useful information. Data mining software is an analytical tool that allows users to analyze data from many different dimensions or angles, categorize, and summarize the relationships identified. Technically, data mining is the process of finding correlations or patterns among dozens of fields in large relational databases. The patterns, associations, or relationships among all this data can provide information. Information can be converted into knowledge about historical patterns and future trends [4]. For example, summary information about crop production can help the farmers identify the crop losses and prevent it in future. Crop yield prediction is an important agricultural problem. Each and Every farmer is always tries to know, how much yield will get from his expectation. In the past, yield prediction was calculated by analyzing farmer's previous experience on a particular crop. The Agricultural yield primarily depends on weather conditions, pests and planning of harvest operation. Accurate information about history of crop yield is an important thing for making decisions related to agricultural risk management [5]. This research focuses on evolution of a prediction model which may be used to predict crop yield production. There are several applications in the field of agriculture. To maximize the crop yield, selection of the appropriate crop that will be sown plays a vital role. It depends on various factors like the type of soil and its composition, climate, geography of the region, crop yield, market prices etc. Techniques like Artificial neural networks, K-nearest neighbors and Decision Trees have carved a niche for themselves in the context of crop selection which is based on various factors. Crop selection based on the effect of natural calamities like famines has been done based on machine learning. The use of artificial neural networks to choose the crops based on soil and climate has been shown by researchers [6]. A plant nutrient management system has been proposed based on machine learning methods to meet the needs of soil, maintain its fertility levels, and hence improve the crop yield. A crop selection method called CSM has been proposed which helps in crop selection based on its yield prediction and other factors. Indian agriculture mainly relies on seasonal rains for irrigation. Therefore, an accurate forecast of weather can reduce the enormous toil faced by farmers in India including crop selection, watering and harvesting. As the farmers have poor access to the Internet as a result of digital-divide, they have to rely on the little information available regarding weather reports [7]. Up-to-date as well as accurate weather information is still not available as the weather changes dynamically over time. Researchers have been working on improving the accuracy of weather predictions by using a variety of algorithms. Artificial Neural networks have been adopted extensively for this purpose. Likewise, weather prediction based on machine learning technique called Support Vector Machines had been proposed. These algorithms have shown better results over the conventional algorithms. Farming sector consumes a huge portion of water in India. The levels of ground water are dropping down day-by-day and global warming has resulted in climate changes. The river water for irrigation is a big issue of dispute among many states in India [8]. To combat the scarcity of water, many
companies have come up with sensor-based technology for smart farming which uses sensors to monitor the water level, nutrient content, weather forecast reports, and soil temperature. EDYN Garden sensor is another example.

Literature Review

Jharna Majumda, et.al (2017) proposed a technique through which the optimal climate requirements which were necessary for increasing the production of wheat were obtained by applying various data mining techniques such as PAM, CLARA, and DBSCAN. Particular quality metrics were utilized to compare the clustering techniques [9]. It was seen through the performed analyses of clustering quality metrics that in comparison to PAM and CLARA, the quality of clustering was better when DBSCAN was applied. However, the clustering quality of PAM was even less than CLARA. Soil and various other factors that defined the growth of crops could be analyzed in future to extend the proposed work. Also, the future work could focus on increasing the production of crop during the changes in climatic conditions of surrounding regions.

Shriya Sahu, et.al (2017) presented a study related to big data in this paper. Agriculture is the main source of human survival in which the crop data analysis is a very important factor to be considered. From the accuracy of agriculture information, the identification of experiences is done with the help of big data in this paper [10]. In order to determine which types of crops are to be planted on the basis of the content of soil, a better prediction mechanism is generated for farmers through which the productivity can be enhanced. In Hadoop framework, the random forest algorithm is integrated along with MapReduce programming model.

Qiben Yan, et.al (2017) proposed a scalable and private continual and private continual geo-distance evaluation system known as SPRIDE such that geographic-based services can be provided. In a private as well as a continuous manner, the distances amongst sensors and farms are calculated here. Without learning any additional information related to the locations, the distances of servers are determined [11]. There is real-time private distance evaluation achieved on the large network of farms due to the utilization of SPRIDE such that there is enhancement of up to 17 times of runtime performance in comparison to the existing techniques as per the simulation results.

K. L. Ponce-Guevara, et.al (2017) presented a study related the most important factors such as humidity, soil moisture, carbon dioxide, and lighting level, that influence the photosynthesis of plants such that the crop growth in a greenhouse can be affected. There will be rise in presence of nutrients with the establishment of correct values and the quality of fruits will also rise with the help of this approach [12]. With the help of huge data, the pattern recognition is focused on in this approach. There is no specific governance of data analytics through a standard with the help of these tools and techniques. However, a set of algorithms in which the descriptive models can be generated on a set of data such that the information can be classified and predicted is provided here.

Luminto, et.al (2017) proposed a novel multiple linear regression model for predicting the rice cultivation time. Here, for the session 2016-17, the highest Farmer’s Exchange Rate at 2 season regions is achieved. The significant variables used here are Average Temperature and Solar Radiation [13]. Only these two variables are utilized here which are not enough for prediction. Through testing of all variable combinations that cause less RMSE values, the prediction can be made within particular regions. In order to predict the issue that is based on multiple dependent variables, an appropriate method known as multiple linear regression technique is utilized. The implementation of this approach is very easy and in comparison to other machine learning techniques, this technique provides high speed results.

Yolanda. M. et.al (2017) presented a study in which for the various flowering stage of maize, the yield was estimated. Thus, on the basis of observed true field values, higher accuracy was calculated. Around 14% of yield
for LAI based prediction model and 97% of accuracy for NDVI based predictive model was estimated [14]. The variation found within the field data collection that occurred at various hours of the day is the major cause of the behavior of LAI based model. The angle of incidence of sun light within the plant canopy is directly affected by it. For the implementation of grain imports policies in relevance to domestic demand, the government officers utilize these estimates.

Anshul Garg, et.al (2017) proposed the establishment of relationships amongst fuzzy intervals through the utilization of Frequency based Partitioning which helps in fuzzily of data. By using the Years as well as the values achieved from the Fuzzy Logical Relationships a graph is plotted to perform regression analysis [15]. In order to assess, appraise as well as estimate the rice production, this proposed fuzzy approach is known to be infallible and economical. In order to handle the multidimensional time series data, the planned model is extended for future work. Also, more advanced algorithms are optimized with this proposed approach. Thus, on the data various degrees of Fuzzy Logical Relationship are applied such that the Universe of Discourse can be partitioned in future.

Susanto B. Sulistyo, et.al (2017) proposed a novel approach through which the nutrient content present within wheat leaves is estimated. This novel technique is basically a computational intelligence vision sensing approach [16]. For the normalization of plant images and for the minimization of color variability because of the variation of sunlight intensities a deep sparse extreme learning machines (DSELM) fusion and genetic algorithm (GA) is proposed. Along with committee machine, a number of DSELMs are integrated and GA is utilized for their optimization such that the nitrogen content within the wheat leaves can be estimated. With respect to quality and processing speeds within all the steps, this approach shows enhance results as per the conducted simulations.

Abishek.B, et.al (2017) presented that it is very difficult to predict the effective rainfall and crop water. There are certain factors such as temperature and humidity that need to be known in order to provide a meticulous and scrupulous analysis [17]. In order to define the effective amount of rainfall that has been within a designated region in simple manner, several factors such as humidity, groundwater, and temperature have been considered. For predicting the amount of rainfall and predicting the crop water requirements of specific region, this technique has been utilized. For the determination of effective rainfall and crop water requirements within particular region such that the crop yield can be maximized, the proposed approach is applied. Various issues that have come forth during irrigation of crops in a region are also avoided through this approach.

Conclusion

The crops were cultivated by the people in ancient times within their own land areas such that they could fulfill their own requirements. Thus, cultivation has been followed ever since and all the living beings have been dependent on this culture. Therefore, the natural crops are cultivated and have been used by many creatures such as human beings, animals and birds. The greenish goods produced in the land which have been taken by the creature leads to a healthy and welfare life. Data mining is the process of analyzing data from different perspectives and summarizing it into useful information. It is concluded that prediction analysis techniques has the phases of feature extraction and classification. The classification techniques give best outcome for the wheat prediction. In future, the novel approach will be designed for the wheat prediction analysis.
References

