Available Online at <u>www.ijcsmc.com</u>

International Journal of Computer Science and Mobile Computing

A Monthly Journal of Computer Science and Information Technology

ISSN 2320-088X IMPACT FACTOR: 6.017

IJCSMC, Vol. 7, Issue. 1, January 2018, pg.61 – 67

CRIMINALS PARSING PREDICTION WITH GOOGLE MAP INTEGRATION USING COA ALGORITHM

T.A.Mohanaprakash¹, Kishore², Mohan Raj³, Salman⁴

Associate Professor, B.E., Computer Science Department, Panimalar Institute of Technology, Chennai¹ Students of B.E., Computer Science Department, Panimalar Institute of Technology, Chennai^{2, 3, 4}

tamohanaprakash@gmail.com¹

ABSTRACT: Intelligent transportation systems (ITS) are refined applications with a spotlightto get and unfoldartistic services associated withcompletely different transport modes for traffic management. The Intelligent travel system provides Associate in Nursing eminent Neural Network based mostly intelligence system that provides automatic allocation of travel's through the worlddata system across the trail of the terrorists travel. It's Associate in Nursing innovative approach which may be enforced in colleges, universities and looking areas. The information is provided throughoutbegin of the journey and therefore the system is difficultowing to dynamic nature of the traffic that varies supported speed, flow, and period of time. In this paper, we tend to use this techniqueto seek out terrorist's parsing victimization the pre-recorded transportation networks employed by him. In the regular life, travel the vehicle oncea visit has been a daily one, because the usage of it's been luxurious and a lot of convenient than the othersupply of location. Everyone prefers to own a worry free travel system within the garage they want to park. In existing system, the vehicle owner rummages around for the travel Place and easily check weather that the travel place is obtainable or not.

I. RELATED WORK

This paper uses Intelligent Trip Modeling System (ITMS) to predict the terrorist parsing for a suspected route based on the prerecorded criminal activities available at the suspected times. The ITMS contains neural networks to predict short-term traffic speed and was trained and evaluated by using traffic data provided by California and Michigan. Experiments show that ITMS is capable of providing accurate predictions of dynamic traffic changes and traveling speed at the beginning of a trip and can generalize well to prediction of speed profiles on the routes other than that the system was trained on. In proposed system identify the specific terrorist parsing areas using prerecorded information's feed at the user side. Advantages of this project are: It can predict the required factors from the pre-recorded information available about the terrorists. Officers can feed several parameters about the suspects to increase the accuracy level. We can clearly visualize the suspected routes with google map integration part in it. This project's algorithm deal with this is optimal, computationally efficient, Integer-bit power allocation algorithm for discrete multitoned modulation. Using efficient lookup table searches and a Lagrange-multiplier bisection search, our algorithm converges faster to the optimal solution than existing techniques and can replace the use of suboptimal methods because of its low computational complexity. Fast algorithms are developed for the data rate and performance margin maximization problems

II. LITERATURE SURVEY

S.NO	TITLE	AUTHOR	CONCEPT	YEAR	ADVANTAGE	DISADVANTAGE
2	A Prototype Empirical Evaluatio n of Test Driven Developm ent	Geras, M.Smith, J. Miller.	On the strength of anecdotal proof and variety of empirical evaluations, TDD is commencing to gain momentum because the primary means that of developing Software package in organizations worldwide. In ancient Development tests are for verification and validation functions and ar e designed when the target product feature exists In check driven development, tests are used for specification functions addi tionally to verification and validation.	2004	On Agile methods, an experiment that test-first nature of TDD and compared it to the test- last nature of traditional software processes.	This retrieves only outline the contributions of this research for understanding of TDD.
2	Impact of Electrical Vehicles on Strategic Planning of Energy Infrastru cture	M. Schulze, J. Zapata Riveros.	The authors investigate the impact of an extra load caused by EVs in an exceedingly residential area surroundings, as it is a typical residential web site for commuters and huge industrial facilities. For modeling and optimization tasks, the Energy Hub conception is applied, that is open for a mixed simulation of different energy carrier and storage devices. Results show a motivating distinction in each peak load and energy demand throughout independent hubs	2010	We can notice remarkable difference in both peak load and energy demand throughout independent hubs.	It appears within a range of 8% to 130%, depending on the hubs area size and internal structure, It cannot exceeded more than that.
3	Macrosc opic Modelin g of Freeway Traffic Using an Artificial Neural Network	Hongjun Zhang, Stephen Ritchie, Zhen- Ping Lo.	A number of the present macroscopic models are found to exhibit instabilities in their behavior and often don't track real traffic knowledge properly. On the opposite hand, microscopic traffic flow models will yield additiona	2014	This have neural network model that can capture the traffic dynamics of this model quite closely	No privacy preservations

© 2018, IJCSMC All Rights Reserved

			l elaborate and correct repr esentations of traffic flow however are computationally intensive and typically not appropriate for time period implementation			
4	Trip Based Optimal Power Manage ment of Plug-in Hybrid Electric Vehicles Using Gas- Kinetic Traffic Flow Model	Qiuming Gong, Yaoyu Li, Zhong- Ren Peng	The plug-in hybrid electrical vehicle (PHEV), utilizing a lot of battery power, is taken into account a next- generation hybrid electrical Vehicles with nice promise of upper fuel economy. The charge-depletion mode is a lot of acceptable for the power management of PHEV, i.e. the state of charge (SOC) is expected to drop to an occasional threshold once t he vehicle reaches the destination of the trip. However, this has up to now been hampered due the a priori nature of the trip info and the virtually preventive machine price of worldwide optimization techniques like dynamic programming (DP).	2008	It has the improvement in fuel economy using DP based charge- depletion control compared to rule based control.	On the traffic flow on highway with on/off ramps which may be missed by the model which used for only main road detectors data.
5	A Worldwi de tourism recomme ndation system based on geotagge d web photos	Lianglian g Cao, Jiebo Luo , Andrew Gallaghe r , Xin Jin , Jiawei Han and Thomas S. Huang	This work aims to build a system to suggest tourist destinations based on visual matching and minimal user input. A user can provide either a photo of the desired scenery or a keyword describing the place of interest, and the system will look into its database for places that share the visual characteristics. To that end, we cluster a large-scale geotagged web photo collection into groups by location and then the representative images for each group. Tourist destination	2010	Geotagged Web Image Retrieval	Effective clustering

			recommendations are			
			produced by comparing the			
			produced by comparing the			
			query against the			
			representative tags or			
			representative images			
			under the premise of "if			
			you like that place, you			
			may also like these places".			
6	GPS	Jing Li,	Most of the social images	2013	GPS	Hierarchical algorithm
	Estimatio	Xueming	are attached with GPS		Estimation.	for estimating the GPS
	n for	Oian	(geo-tags) a photo's GPS		Inverted File	location
	Places of	Vuan	information can be		Structure	location
	I laces 01	Von	astimated with the help of		Structure,	
	Erom		the large geo to good image			
			the large geo-tagged image			
	Social	Linjun	set while using a visual			
	Users	Yang,	searching based approach.			
	Uploaded	and Tao	This paper proposes an			
	Photos	Mei,	unsupervised image GPS			
			location estimation			
			approach with hierarchical			
			global feature clustering			
			and local feature			
			refinement. It consists of			
			two parts: an offline			
			system and an online			
			system In the offline			
			system a hierarchical			
			structure is constructed for			
			structure is constructed for			
			a large-scale offline social			
			image set with GPS			
			information.			
			Representative images are			
			selected for each GPS			
			location refined cluster,			
			and an inverted file			
			structure is proposed. In			
			the online system, when			
			given an input image, its			
			GPS information can be			
			estimated by hierarchical			
			global clusters selection			
			and local feature			
			refinement in the online			
			system. Both the			
			computational cost and			
			GPS estimation			
			performance demonstrates			
			the effectiveness of the			
			nronosed hierarchical			
			atmoture and invested file			
			structure and inverted file			
	.	N Z ·	structure in our approach.	0015	т	
	Image	Xueming	As to images which are not	2015	Image	KANSAC and spatial
	Location	Qian,	geographically tagged, we		retrieval,	coding
	Estimatio	Yisi	estimate their locations		bag-of-	
	n by	Zhao,	with the help of the large		words,	
	Salient	and	geo-tagged image set by		spatial	

	Ragion	Iunwoi	contant based image		constraint	
	Matching	Juliwei	ratriaval. In this paper, we		collications	
	Watching	Пан,	avploit enotial information		datastion	
			exploit spatial information		detection,	
			of useful visual words to		mean-sniit.	
			improve image location			
			estimation (or content-			
			based image retrieval			
			performances). We			
			proposed to generate visual			
			word groups by mean-shift			
			clustering. To improve the			
			retrieval performance,			
			spatial constraint is utilized			
			to code the relative			
			position of visual words.			
			We proposed to generate a			
			position descriptor for each			
			visual word and build fast			
			indexing structure for			
			visual word groups			
			Experiments show the			
			offectiveness of our			
			proposed approach			
0	Author	Chuhui	Collaborativa filtaring (CE)	2015	Doto mining	CDS trainatorias
8	Author	Shunui	Collaborative filtering (CF)	2015	Data mining,	GPS trajectories
	Topic	Jiang,	is the most well-known		recommendat	
	Model-	Xueming	approach. However,		10n system,	
	Based	Qian,	existing approaches		text mining,	
	Collabor	Jialie	generally suffer from		travel	
	ative	Shen,	various weaknesses. For		Recommend	
	Filtering	and Tao	example, sparsity can		ation.	
	for	Mei,	significantly degrade the			
	Personali		performance of traditional			
	zed POI		CF. If a user only visits			
	Recomm		very few locations,			
	endations		accurate similar user			
			identification becomes			
			very challenging due to			
			lack of sufficient			
			information for effective			
			inference. Moreover.			
			existing recommendation			
			approaches often ignore			
			rich user information like			
			textual descriptions of			
			photos which can reflect			
			users' travel preferences			
			The tonic model (TM)			
			method is an affactive way			
			to solve the "energity			
			nrohlom "host is still C			
			problem, but is still far			
			from satisfactory. In this			
			paper, an author topic			
			model-based collaborative			
			filtering (ATCF) method is			
			proposed to facilitate			
			comprehensive points of			

-						
			interest (POIs)			
			recommendations for			
			social users. In our			
			approach, user preference			
			topics, such as cultural.			
			cityscape or landmark are			
			extracted from the geo tag			
			extracted from the geo-tag			
			constrained textual			
			description of photos via			
			the author topic model			
			instead of only from the			
			geo-tags (GPS locations).			
9	Argo:	Xin-Jing	In the online stage, the	2009	Pattern	non-intrusively embed
	Intelligen	Wang	process of Argo contains		Recognition	ads
	t	Mo Yu	three steps: 1)		and	uub
	Advortigi		understanding the content		and	
	Advertisi	Lei				
	ng by	Zhang,	and semantics of a user's		V1S10n.	
	Mining a	Rui Cai	photos and auto-tagging			
	User's	and	each photo to supplement			
	Interest	Wei-	user-submitted tags (such			
	from His	Ying	tags may not be available);			
	Photo		2) learning the user interest			
	Collectio		given a set of photos based			
			on the learnt hierarchical			
	115		on the learnt merarchical			
			topic space; and 3)			
			representing ads in the			
			topic space and matching			
			their topic distributions			
			with the target user			
			interest: the top ranked ads			
			are output as the suggested			
			ade			
10	Trin	Uuogong	About 20 million goo	2012	Cao taggad	Travel sequence and
10		nuagang	About 20 minion geo-	2012	Deo-tagged	Traver sequence and
	Mining	Y 1n,	tagged photos were		Photos, Path	travel path is not
	and	Changhu	crawled from		Mining,	accurate up to level
	Recomm	Wang,	Panoramio.com. Then a		Search	
	endation	Nenghai	substantial number of		System, Trip	
	from	Yu . and	travel paths are minded		Planning.	
	Geo-	Lei	from the crawled geo-		8	
	tagged	Zhang	tagged photos After that			
	Dhotos	Zhang	agged photos. After that,			
	Photos		asearch system is built to			
			index and search the paths,			
			and the Sparse Chamfer			
			Distance is proposed to			
			measure the similarity of			
			two paths. The search			
			system supports various			
			types of queries including			
			(1) a destination name: (2)			
			(1) a destination field (2)			
			a user-specified region on			
			the map; (3) some			
			userpreferred locations.			
			Based on the search			
			system, users can interact			
			with the system by			
			specifying a region or			

	soveral interest points on	
	several interest points on	
	the map to find paths.	
	Extensive experiments	
	show the effectiveness of	
	the proposed framework.	

III. CONCLUSION

This paper focuses on criminal parsing and so predicts the criminal activities with pre corded documents from the police department. Since there are cars interactions exist on the road including the local road, so traffic signal may not enough for the traffic model for the local road. Car following model which describe the interaction of cars on the road may be studied in the next step for the trip modeling for the local road portion. Thus we can reduce the criminal activities prior and help the police department in investigation.

IV. FUTURE WORK

The limitation of this kind of approach is that it excludes attacks which will have happened while not this type of on-line build up. Every of those studies focuses solely on a little facet of the broader system of terrorist act. Therefore unless we are able to show that these patterns occur all told kinds of terror-related things, we've to watch out to not exaggerate their importance and bear in mind that alternative factors as well as political and private things will drive acts of violence.

REFERENCES

[1] H. Liu, T. Mei, J. Luo, H. Li, and S. Li, "Finding perfect rendezvous on the go: Accurate mobile visual localization and its applications to routing," in Proc. 20th ACM Int. Conf. Multimedia, 2012, pp. 9–18.

[2] J. Li, X. Qian, Y. Y. Tang, L. Yang, and T. Mei, "GPS estimation for places of interest from social users' uploaded photos," IEEE Trans. Multimedia, vol. 15, no. 8, pp. 2058–2071, Dec. 2013.

[3] S. Jiang, X. Qian, J. Shen, Y. Fu, and T. Mei, "Author topic model based collaborative filtering for personalized POI recommendation," IEEE Trans. Multimedia, vol. 17, no. 6, pp. 907–918, Jun. 2015.

[4] J. Sang, T. Mei, T. J. Sun, S. Li, and C. Xu, "Probabilistic sequential POIs recommendation via check-in data," in Proc. ACM SIGSPATIAL Int. Conf. Adv. Geographic Inform. Syst., 2012, pp. 402–405.

[5] Y. Zheng, L. Zhang, Z. Ma, X. Xie, and W. Ma, "Recommending friends and locations based on individual location history," ACM Trans. Web, vol. 5, no. 1, p. 5, 2011.

[6] H. Gao, J. Tang, X. Hu, and H. Liu, "Content-aware point of interest recommendation on location-based social networks," in Proc. 29th Int. Conf. AAAI, 2015, pp. 1721–1727.

[7] Q. Yuan, G. Cong, and A. Sun, "Graph-based point-of-interest recommendation with geographical and temporal influences," in Proc. 23rd ACM Int. Conf. Inform. Knowl. Manage., 2014, pp. 659–668.

[8] H. Yin, C. Wang, N. Yu, and L. Zhang, "Trip mining and recommendation from geo-tagged photos," in Proc. IEEE Int. Conf. Multimedia Expo Workshops, 2012, pp. 540–545.

[9] Y. Gao, J. Tang, R. Hong, Q. Dai, T. Chua, and R. Jain, "W2go: A travel guidance system by automatic landmark ranking," in Proc. Int. Conf. Multimedia, 2010, pp. 123–132.

[10] X. Qian, Y. Zhao, and J. Han, "Image location estimation by salient region matching," IEEE Trans. Image Process., vol. 24, no. 11, pp. 4348–4358, Nov. 2015.

© 2018, IJCSMC All Rights Reserved