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Abstract— In Infrastructure-as-a-Service (laaS) dm computing, computational resources are provided
remote users in the form of leases. For a cloud ysée/she can request multiple cloud services
simultaneously. In this case, parallel processing the cloud system can improve the performance. Whe
applying parallel processing in cloud computing, it necessary to implement a mechanism to allocate
resource and schedule the execution order of tadksrthermore, a resource optimization mechanism kit
preemptable task execution can increase the utiiga of clouds. In this paper, we propose two oréin
dynamic resource allocation algorithms for the laa8oud system with preemptable tasks. Our algorigim
adjust the resource allocation dynamically based thre updated information of the actual task exeaurs.
And the experimental results show that our algonitts can significantly improve the performance in the
situation where resource contention is fierce.

I. INTRODUCTION

In cloud computing, a cloud is a cluster of digitdd computers providing on-demand computational
resources or services to the remote users overtworke In an Infrastructure-as-a-Service (laaS)udio
resources or services are provided to users ifotine of leases. The users can control the resowafesdy. the
capacity used. Cloud computing is emerging withmgng popularity and adoption. However, there isdata
center that has unlimited capacity. Thus, in cdsg&gmificant client demands, it may be necessargverflow
some workloads to another data center. These wanktharing can even occur between private andcpubl
clouds, or among private clouds or public cloudse Workload sharing is able to enlarge the resopocé and
provide even more flexible and cheaper resourcescdllaborate the execution across multiple clouts,
monitoring and management mechanism is a key coemtaend requires the consideration of provisioning,
scheduling, monitoring, and failure management. fleemajor contributions of this paper are:

» We present a resource optimization mechanisneiarbgeneous laaS federated multi-cloud systemshwh
enables preemptable task scheduling. This mechaisisuitable for the autonomic feature within clsuahd
the diversity feature of VMs.

» We propose two online dynamic algorithms for tese allocation and task scheduling. We consider th
resource contention in the task scheduling.
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Il. MODEL AND BACKGROUND

2.1 Cloud system

In this paper, we consider an infrastructure-asfaise (laaS) cloud system. In this kind of systamumber
of data center participates in a federated appro@bbse data centers deliver basic on-demand staagd
compute capacities over Internet. The provisionthefse computational resources is in the form ofualr
machines (VMs) deployed in the data center. Theseurces within a data center form a cloud. Virtoathine
is an abstract unit of storage and compute capagitiovided in a cloud. Without loss of generalitg, assume
that VMs from different clouds are offered in diat types, each of which has different charadiesisFor
example, they may have different numbers of CPUgumts of memory and network bandwidths. As well,
the computational characteristics of different QR&y not be the same.

For a federated cloud system, a centralized manageapproach, in which a super node schedule tasks
among multiple clouds, may be an easy way to addresscheduling issues in such system. Thus weopeoa
distributed resource allocation mechanism thathmnsed in either federated cloud system or thedutloud
system with multiple providers.

As shown in Fig. 1, in our proposed cloud resowabecation mechanism, every data center has a reanag
server that knows the current statuses of VMsdgroiwn cloud. And manager servers communicate vétt e
other. Clients submit their tasks to the cloud wh#re dataset is stored. Once a cloud receives,task
manager server can communicate with manager sevf/etber clouds, and distribute its tasks acrbsswthole
cloud system by assigning them to other cloudsecuating them by itself.

When distributing tasks in the cloud system, managevers should be aware of the resource avatlabiln
other clouds, since there is not a centralized rsmpele in the system. Therefore, we need the resour
monitoring infrastructure in our resource allocatimechanism. In cloud systems, resource monitoring
infrastructure involves both producers and conssmeroducers generate status of monitored resoubces
consumers make use of the status information. Tasicomessaging methods are used in the resource
monitoring between consumers and producers: thenpde and the push model. Consumers pull inforonati
from producers to inquire the status in the pulldeoln the push mode, when producers update aoyines
status, they push the information to the consuniene. advantage of the push mode is that the acgusac
higher when the threshold of a status update,trigger condition, is defined properly. And thevadtage of
the pull mode is that the transmission cost isssn the inquire interval is proper.

In our proposed cloud system resource allocatiochaxeism, we combine both communication modes in the
resource monitoring infrastructure. In our proposesthanism, when the manager server of cloud Ajassin
application to another cloud B, the manager seofek is the consumer. And the manager server of Bhé
producer. Manager server of A needs to know theureg status from the manager server of B in tvemados:

(1) when the manager server of A is consideringgassy tasks to cloud B, the current resource stafiucloud
B should be taken into consideration. (2) Whendtisra task is assigned to cloud B by manager sefva,
and this task is finished, manager server of A khba informed.

We combine the pull and the push mode as the fatigw

» A consumer will pull information about the resceirstatus from other clouds, when it is making daliag
decisions.

* After an application is assigned to another clahd consumer will no longer pull information redjag to
this application.

* When the application is finished by the produdke producer will push its information to the comer.
The producer will not push any information to tlemsumer before the application is finished.

In a pull operation, the trigger manager servedsentask check inquire to manager servers of afbends.
Since different cloud providers may not be willitogshare detailed information about their resoanalability,
we propose that the reply of a task check inquiveukl be as simple as possible. Therefore, in oopgsed
resource monitoring infrastructure, these targehagar servers give only responses at the earliesiable
time of required resources, based on its curraatustof resources & no guarantee or reservatiamade.
Before target manager servers check their resauraability, they first check the required dataeality. If
the required dataset is not available in their datater, the estimated transferring time of thesktt from the
trigger cloud will be included in the estimationtbé earliest available time of required resouréssuming the
speed of transferring data between two data ceige$s , and the size of the required dataset is, Mh@&n the
preparation overhead is MS/Sc . Therefore, whemget cloud already has the required dataset oaits center,
it is more likely that it can respond sooner atéhéliest available time of required resourcescWhmnay lead to
an assignment to this target cloud. In a push ojperawhen B is the producer and A is the consurttes,
manager server of B will inform the manager seofek the time when the application is finished.

When a client submits his/her workload, typically application, to a cloud, the manager server first
partitions the application into several tasks, lamag in Fig. 2. Then for each task, the manageresatecides
which cloud will execute this task based on theorimfation from all other manager servers and the dat
dependencies among tasks. If the manager serignasstask to its own cloud, it will store thek&s a queue.
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And when the resources and the data are readytagkss executed. If the manager server of clowbsgigns a
task to cloud B, the manager server of B first &eghether its resource availabilities can meetéggirement
of this task. If so, the task will enter a queudting for execution. Otherwise, the manager senfeB will
reject the task. Before a task in the queue of aager server is about to be executed, the manageers
transfers a disk image to all the computing notlasprovide enough VMs for task execution.

Fig. 1. An example of our proposed cloud resoulieaion mechanism. Heterogeneous VMs are provided
by multiple clouds. And clouds are connected toltiernet via manager servers
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Fig. 2. When an application is submitted to thaidleystem, it is partitioned, assigned, schedwaled,
executed in the cloud system.
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We assume that all required disk images are sioréfie data center and can be transferred to adslas
needed. We use the multicasting to transfer thgénta all computing nodes within the data centesulning
the size of this disk image is Sl , we model tlasfer time as Sl/b, where b is the network bantwi/hen a
VM finishes its part of the task, the disk imageliscarded from computing nodes.
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2.2 Resource allocation model

In cloud computing, there are two different modeeeating the computing capacities from a cloudvinter.

» Advance Reservation (AR): Resources are resérvadvance. They should be available at a speifie.

* Best-effort: Resources are provisioned as sogoasible. Requests are placed in a queue.

A lease of resource is implemented as a set of \Avigl the allocated resources of a lease can beildedc
by a tuple (n,m, d, b), where n is number of CPUsmemory in megabytes, d is disk space in megabwgted
b is the network bandwidth in megabytes per secbadthe AR mode, the lease also includes the redutart
time and the required execution time. For the leffsit and the immediate modes, the lease hasnr#tion
about how long the execution lasts, but not the sime of execution. The best-effort mode is supgb by
most of the current cloud computing platform. Thaizéa, which is a resource lease manager for Opmridle
supports the AR mode. The “map” function of “mapduce” data-intensive applications are usually
independent. Therefore, it naturally fits in thestoeffort mode. However, some large scale “redupsicesses
of data intensive applications may needs multipéucers. For example, a simple “wordcount” apgiion
with tens of PBs of data may need a parallel “i@luprocess, in which multiple reducers combine thsults
of multiple mappers in parallel. Assuming there idreeducers, in the first round of parallel “redti¢c each of
N reducers counts 1/N results from the mappersn i@ reducers receive results from the other ticers,
and counts 2/N results from the last round of radyclt repeats log2 N + 1 rounds. Between two dsjn
reducers need to communicate with others. TherefmeAR mode is more suitable for these data-iftens
applications.

When supporting the AR tasks, it may leads to zation problem, where the average task waitinggtiis
long, and machine utilization rate is low. Combmi&R and best-effort in a preemptable fashion caraome
these problems. In this paper, we assume that af@pplications submitted in the cloud systemiarihe AR
mode, while the rest of the applications are in best-effort mode. And the applications in AR mdueve
higher priorities, and are able to preempt the etens of the best-effort applications.

When an AR task A needs to preempt a best-effskt B3 the VMs have to suspend task B and restae th
current disk image of task B in a specific diskaphefore the manager server transfers the disgarétasks
A to the VMs. When the task A finishes, the VMslwélsume the execution of task B. We assume tleaétis a
specific disk space in every node for storing tisl tmage of suspended task.

There are two kinds of AR tasks: one requires @ s$itme in future, which is referred to as “nonrae
advance notice” AR task; the other one requirebd@xecuted as soon as possible with higher tyitvan the
best-effort task, which is referred to as “zerwace notice” AR task. For a “zero advance notiédR task, it
will start right after the manager server makes sobeduling decision and assign it a cloud. Singe o
scheduling algorithms, mentioned heuristic appreactthis waiting time is negligible, compared te th
execution time of task running in the cloud system.

2.3 Local mapping and energy consumption

From the user’s point of view, the resources in ¢lmd system are leased to them in the term of VMs
Meanwhile, from the cloud administrator’s point\déw, the resources in the cloud system are udlizethe
term of servers. A server can provide the resoun€esultiple VMs, and can be utilized by severalkis at the
same time. One important function of the manageveseof each cloud is to schedule its tasks tcsésver,
according to the number of required VMs. Assumingre are a set of tasks T to schedule on a serwse S
define the remaining workload capacity of a se&és C(S), and the number of required VM by task ti(ti).
The server can execute all the tasks in T only if:

C(S)> 22 (wiI(ti)).

teT

We assume servers in the cloud system work in tifferdnt modes: the active mode and the idle mode.
When the server is not executing any task, it igched to the idle mode. When tasks arrive, theeseis
switched back to the active mode. The server corsumuch less energy in the idle mode than thdterattive
mode.

2.4 Application model

In this paper, we use the Directed Acyclic Grapb&@) to represent applications. A DAG T = (V, E)
consists of a set of vertices V, each of whichesents a task in the application, and a set ofssEgshowing
the dependences among tasks. The edge set E coetigjas eij for each task&iV that task vie V depends on.
The weight of a task represents the type of tts&.t&iven an edge eij, vi is the immediate predsmesf vj,
and vj is called the immediate successor of viasktonly starts after all its immediate predecesg$inish.
Tasks with no immediate predecessor are entry-rasttetasks without immediate successors are edi.no

Although the compute nodes from the same cloud esayp with different hardware, the manager sereer ¢
treat its cloud as a homogeneous system by usm@libtract compute capacity unit and the virtuathime.
However, as we assumed, the VMs from different dtomay have different characteristics. So the whided
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system is a heterogeneous system. In order to idesthe difference between VMs' computational
characteristics, we use an M x N execution timerim@ETM) E to indicate the execution time of M B of
tasks running on N types of VMs. For example thiyeaij in E indicate the required execution timetask
type i when running on VM type j. We also assunet #htask requires the same lease (n,m,d,b) n@ntit
which type of VM the task is about to run.

Fig. 3. (a) The DFG of three applications, (b) ¢xecution time table, and (c) two different tasg&gisments,
where “RR” is the round-robin approach, and “Sdk using the list scheduling.
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Ill. RESOURCE ALLOCATION AND TASK SCHEDULING ALGORITHM

Since the manager servers neither know when afiplisaarrive, nor whether other manager serversivec
applications, it is a dynamic scheduling problene Wopose two algorithms for the task schedulirygragic
cloud list scheduling (DCLS) and dynamic cloud nmmr scheduling (AMMS).

3.1 Static resource allocation

When a manager server receives an application ssbni it will first partition this application iattasks in
the form of a DAG. Then a static resource allogaifogenerated offline. We proposed two greedyrétlyas to
generate the static allocation: the cloud list deitieg and the cloud min—min scheduling.

3.1.1 Cloud list scheduling (CLS)

Our proposed CLS is similar to CPNT. Some definiaised in listing the task are provided as folldhe
earliest start time (EST) and the latest start {{b®T) of a task are shown as in the following &ipns.

The entry-tasks have EST equals to 0. And The LiSSkib-tasks equal to their EST.

EST (vi) = max {EST (vm) + AT(vm)}

vrepred(vi)

LST (vi) = min {LST (vm)}

vhesuccvi — AT(vi)

Because the cloud system concerned in this pagetéogeneous, the execution times of a task os ¥M
different clouds are not the same. AT(vi) is therage execution time of task vi. The critical ng@#\) is a set
of vertices in the DAG of which EST and LST are @&gélgorithm 1 shows a function forming a task lissed
on the priorities.

Once the list of tasks is formed, we can allocas®urces to tasks in the order of this list. Tls& tan the top
of this list will be assigned to the cloud that demish it at the earliest time. Note that the tégkng assigned at
this moment will start execution only when all jgsedecessor tasks are finished and the cloud resour
allocated to it are available. After assigned, thgk is removed from the list. The procedure regeatil the list
is empty. A static resource allocation is obtaiaédr this assigning procedure that is shown inofitgm 2.

Algorithm 1 Forming a task list based on the pties

Require: A DAG, Average execution time AT of eveaigk in the DAG.
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Ensure: A list of tasks P based on priorities.

1: The EST of every tasks is calculated.

: The LST of every tasks is calculated.

: Empty list P and stack S, and pull all taskehilist of task U.

: Push the CN task into stack S in the decreasider of their LST

- while the stack S is not empty do

: if top(S) has un-stacked immediate predeceskers

: S—the immediate predecessor with least LST

: else

: P—top(S)

10: pop top(S)

11: end if

12: end while

Algorithm 2 The assigning procedure of CLS

Require: A priority-based list of tasks P, m diéfet clouds, ETM matrix

Ensure: A static resource allocation generated by C

1: while The list P is not empty do

2: T =top(P)

3: Pull resource status information from all othexnager servers

4: Get the earliest resource available time fowith the consideration of the dataset transfertiimg
response from all other manager servers

5: Find the cloud Cmin giving the earliest estinddfi@ish time
of T, assuming no other task preempts T

6: Assign task T to cloud Cmin

7: Remove T from P

8: end while

3.1.2 Cloud min—min scheduling (CMMS)

Min—min is another popular greedy algorithm. Theégioal min—min algorithm does not consider the
dependences among tasks. So in the dynamic minalgorithm used in this paper, we need to update the
mappable task set in every scheduling step to miaitlie task dependences. Tasks in the mappablseasre
the tasks whose predecessor tasks are all assigihgokithm 3 shows the pseudo codes of the DMMS
algorithm.

3.1.3 Energy-aware local mapping

A manager server uses a slot table to record eacsthedules of all resources, i.e., serverstsirtibud.
When an AR task is assigned to a cloud, the managerer of this cloud will first check the resource
availability in this cloud. Since AR tasks can prge best-effort tasks, the only case where an AR {a
rejected is that most of the resources are resdoyesbme other AR tasks at the required time, naugh
resources left for this task. If the AR task is rejected, which means there are enough resouncdisi$ task, a
set of servers will be reserved by this task, udimg algorithm shown in Algorithm 4. The time sldts
transferring the disk image of the AR task andttsk execution are reserved in the slot tablebasfe servers.
The time slots for storing and reloading the disiage of the preempted task are also reserved éhgygon
happens.

When a best-effort task arrives, the manager sevileput it in the execution queue. Every time whtbere
are enough VMs for the task on the top of the quaiset of servers are selected by the algorittowshin Alg.
5. And the manager server also updates the tinbi¢éadle of those servers

Algorithm 3 Cloud min—min scheduling (CMMS)

Require: A set of tasks, m different clouds, ETMtmixa

Ensure: A schedule generated by CMMS.

1: Form a mappable task set P.

2: while there are tasks not assigned do

3: Update mappable task set P.

4: for i: task vie P do

5: Pull resource status information from all otheznager servers.

6: Get the earliest resource available time, whil ¢onsideration of the dataset transferring tissponse
from all other manager servers.

7: Find the cloud Cmin(vi) giving the earliest Bhitime of vi, assuming no other task preempts vi

8: end for

9: Find the task-cloud pair(vk, Cmin(vk)) with tkearliest finish time in the pairs generated inltmp.
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10: Assign task vk to cloud Dmin(vk).
11: Remove vk from P.

12: Update the mappable task set P
13: end while

Algorithm 4 Energy-aware local mapping for AR tasks

Require: A set of AR tasks T, which require tatsté the same time. A set of servers S.
Ensure: A local mapping

1:fortie T do

2: Calculate wim(ti)

3:if wi(ti) — wim(ti) < > sieidle(C(si)) then

4: Schedule wi(ti) — wim(ti) to the idle servers

5: else

6: First schedule a part of wl(ti)-wIm(ti) to thelé servers

7: Schedule the rest of wi(ti) — wim(ti) to the imetservers, preempting the best-effort tasks
8: end if

9: end for

10: Sort tasks in T in the descending order of mmatgvorkload, form list Ld.
11: Sort tasks in T in the ascending order of mmeaigivorkload, form list La
12: while T is not empty do

13: ta = top(Ld)

14: if there exists a server j: C(j) = wim(ta) then

15: Schedule the wim(ta) to server j

16: end if

17: sa = maxgS(C(si)).

18: Schedule ta to sa, delete ta from T, Ld, aad L

19: for k: tke La do

20: if C(sa) > 0 and C(s&)wim(tk) then

21: Schedule tk to sa, delete tk from T, Ld, aad L

22: else

23: Break

24: end if

25: end for

26: end while

The objectives of Algorithms 4 and 5 are to minienthe number of active servers as well as the éotatgy
consumption of the cloud. When every active seisdully utilized, the required number of activengss is
minimized. When task ti is assigned to cloud j,deéine the marginal workload of this task as:

wim(ti) = wi(ti) mod C(Sj) (4)

where Sj represents the kind server in cloud j, @¢®}) is the workload capacity of server Sj. Tiodfithe

optimal local mapping,

Algorithm 5 Energy-aware local mapping for bedbeftask

Require: A set of best-effort tasks T , which ctartsat the same time. A set of servers S

Ensure: A local mapping

1:fortie T do

2: Calculate wim(ti).

3: Schedule wi(ti) = wim(ti) to the idle servers.

4: end for
5: Form a set of active servers Sg that C(si) ¥sDg Sg .

6: Sort tasks in T in the descending order of nmaigivorkload, form list Ld
7: Sort tasks in T in the ascending order of maagivorkload, form list La
8: while T is not empty do

9: ta = top(Ld)

10: if there exists a server jin Sg : C(j) = wla)(then

11: Schedule the wim(ta) to server j

12: end if

13: sa = maxgSg (C(si))

14: if C(sa) < wim(ta) then

15: sa = anyidleserver

16: end if
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17: Schedule ta to sa, delete ta from T, Ld, aamd L

18: for k: tke La do

19: if C(sa) > 0 and C(s&)wIm(tk) then

20: Schedule tk to sa, delete tk from T, Ld, aad L

21: else

22: Break

23: end if

24: end for

25: end while

We group all the tasks that can be executed simeduasly, and sort them in the descending ordehaif t
marginal workloads. For each of the large margivaikload task, we try to find some small marginairidoad
tasks to fill the gap and schedule them on a server

3.1.4 Feedback information

In the two static scheduling algorithms presentealvea, the objective functions when making decisibout
assigning a certain task is the earliest estiméitésh time of this task. The estimated finish tiroktask i
running on cloud fzi,j, is as below:

Ti,j = ERATI,j + SI/b + ETMi,j. (5)

Sl is the size of this disk image, b is the netwakdwidth. ERATI,] is the earliest resource avdéatime
based the information from the pull operation.sltalso based on the current task queue of cloudl jthe
schedule of execution order. But the estimatedffitime from (5) may not be accurate. For exanggdeshown
in Fig. 5(a), we assume there are three cloudkdrsystem. The manager server of cloud A needssigraa
best-effort task i to a cloud. According to Eq., @pud C has the smallest So manager server A transfers task
i to cloud C. Then manager server of cloud B ndedsssign an AR task j to a cloud. Task j needsserve the
resource at 8. Cloud C has the smakltestiain. manager server B transfers task j to cfou8ince task j needs
to start when i is not done, task j preempts tesktime 8, as shown in Fig. 6. In this case, tttea finish time
of task i is not the same as expected.

In order to reduce the impacts of this kind of gielave use a feedback factor in computing the egéch
finish time. As discussed previously in this papeg assume once a task is done, the cloud will lsh
resource status information to the original clofidain, using our example in Fig. 5, when taskdase at time
Tact_fin(=14), manager server C informs manageveseA that task i is done. With this informatiornet
manager server A can compute the actual executienti,j of task i on cloud j:

Arti,j = Tact_fin — ERATI,j.
And the feedback factor fdj of cloud j is :
fdj = a X Ati,j — Sl/b - ETMi,j
SI/b + ETMi,j
a is a constant between 0 and 1. So a feedbackastinearliest finish timefdi,j of task i running on cloud j
is as follows:
tfdi,j = ERATI,j + (1 + fdj) x (Sl/b + ETMi,)).

In our proposed dynamic cloud list scheduling (DEB8d dynamic cloud min—-min scheduling (DCMMS),
every manager server stores feedback factors ofl@lids. Once a manager server is informed thatsk t
originally from it is done, it will update the vauof the feedback factor of the task-executing @lokor
instance, in the previous example, when cloud @lies task i and informs that to the manager sefveloud
A, this manager server will update its copy of tegek factor of cloud C. When the next task k issidared for
assignment, thefdk,C is computed with the new feedback factor ased as objective function.

© 2013, IJICSMC All Rights Reserved 172



M. Madhushudhanaet al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 163-17

Task i

Task j
Scheduler
Scheduler
- _‘—*'v’_"r’_“-,“ ———
) fom s TN
A
B
Task i Task j
cloud ERAT Sl/b ETMi cloud ERAT Si/b ETMj
A 2 1 10 A 8 1 4
B 3 1 8 B 8 1 3
C 4 1 6 C 8 1 2

Fig. 5. Example of resource contention. (a) Twdkdaare submitted to a heterogeneous clouds sygtgm.
The earliest resource available times (ERAT), thage transferring time (Sl/b), and the executioret{EMT)
of two tasks on different clouds

IV. EXPERIMENTAL RESULTS

4.1 Experiment setup

We evaluate the performance of our dynamic algorthihrough our own written simulation environment
that acts like the laaS cloud system. We stimuadekloads with job traces from the Parallel Worldea
Archive. We select three different job traces: LL-Whunder, LLNL-Atlas, and LLNL-uBGL. For each job
tracer, we extract four values: the job ID, the géart time, the job end time, and the node lisiwelver, job
traces from the Parallel Workloads Archive do malude information about data dependencies. To laiu
data dependencies, we first sort jobs by theit §tae. Then we group up to 64 adjacent jobs asapmdication,
represented by a randomly generated DAG. Tableotvsihow we translate those values from job tracdhke
parameter we use in our application model. Notéweamap the earliest job start time in an applicaas the
arrival time of this application, since there ismegord about job arrival time in these job traddeere are three
data center in our simulation: (1) 1024 node chlystéth 4 Intel 1A-64 1.4 GHz Itanium processorsGB
memory, and 185 GB disk space per node; (2) 1182 wotuster, with 8 AMD Opteron 2.4 GHz processtfs,
GB memory, and 185 GB disk space per node; (3) 20d8essors BlueGene/L system with 512 MB memory,
80 GB memory. We select these three data centdigooation based on the clusters where LLNL-Thunder
LLNL-Atlas, and LLNL-uBGL job traces were obtaineBased on the information in [24], we compare the
computational power of these three data centerallel2. With the normalized performance per core,can
get the execution time of all tasks on three déffer
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Execution of task i

o Time
(8] 4 5 11
The estimated execution of task i in cloud C

remain

task i task j
of task i

P  Time
0 4 5 a8 9 11 14

The actual execution of task i when preempted by task j in cloud C

Fig. 6. The estimated and the actual executionrafihe cloud C.

Table 1
The mapping of job traces to applications.
Parameter in our model Values in job traces
Task id Job ID
Application arrival time Min(job start time)
Task execution time Job end time—job stareti
# of CPU required by a task Length(node fistpu per node
Table 2

Comparison of three data center. The job trace LIUBIGL was obtained from a small uBGL, which has the
same single core performance as the one showisitatile.

Data center Peak performance (TFLOP/8)Jumber of CPUs Normalized performance pee co
Thunder 23 4 096 1
Altas 44.2 9216 0.85
uBGL(big) 229.4 81920 0.50
Table 3
Feedback improvements in different cases.
Arrival gap DLS FDLS(= 1) Feedback DMMS FDMMS Feedback
reduces improve. (%) a€l) improve. (%)
times
1 237.82 253.59 6.63 206.31 223.47 -8.32
20 309.35 286.55 7.37 262.66 255.44 2.75
40 445.74 397.15 10.9 385.48 336.52 12.7
60 525.32 420.83 19.89 448.04 343.60 23.31
80 729.56 537.28 26.36 648.37 440.05 32.13
100 981.41 680.22 30.69 BB1504.66 40.23
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Table 4
Average application execution time with variousgeertages of AR applications in the loose situation 0.8).
0% 20% 50% 80% 100%
FCFS 1 1 1 1 1
DCLS 0.81 0.75 0.61 0.55 0.49
DCMMS 0.77 0.56 0.52 0.46 0.44

In order to find out the relationship between reseudata centers. Among these applications, 20%
applications are in the AR modes, while the restiarthe best-effort modes. We assume the bandwiettieen
two data centers are 1 Ghps, the bandwidth of nod#de the data center are 4 GBps, and the sizverfy
dataset is 1 TB. We run these three jobs traceraighain our simulation. We set the arrival oplgations in
two different ways. In the first way, we use thelieat start time of an application in the origijal trace as the
arrival time of this application. We also set tleguired start time of an AR application as a randdent time
no later than 30 min after it arrives. In most loé ttast, applications do not need to contend ressun this
setting. We call this a loose situation. In theeotivay, we set the arrival time of applicationssel¢o each other.
In this setting, we reduce the arrival time gapmeein two adjacent application by 100 time. It nedrat
applications usually need to wait for resourcesldud. We call this a tight situation. In both thdwo setting,
we tunes the constaatto show how the dynamic procedure impacts theameeapplication execution time. We
define the execution time of an application as tinge elapses from the application is submitted he t
application is finished.

12
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L 1+ = ¢ ¢ 5 & ¢ % Z & $
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Fig. 7. Average application execution time in tbede situation.

4.2 Result

Fig. 7 shows the average application execution fimthe loose situation. We compare our two dynamic
algorithms with the First-Come-First-Serve (FCFBjoathm. We find out that the DCMMS algorithm higne
shorter average execution time. And the dynamicemtare with updated information does not impact the
application execution time significantly. The reagbe dynamic procedure do not has a significamiaich on
the application execution time is that the resowa®ention is not significant in the loose sitoatiMost of the
resource contentions occur when an AR applicati@empts a best-effort application. So the estimétesh
time of an application is usually close to the atfinish time, which limits the effect of the dym& procedure.
And the manager server does not call the dynanaicgglure in most of the cases.

Fig. 8 shows that DCMMS still outperforms DCLS aR@FS. And the dynamic procedure with updated
information works more significantly in the tighitusation than it does in the loose situation. Beeathe
resource contentions are fiercer in tight situatithe actual finish time of a task is often lateart estimated
finish time. And the best-effort task is more likgreempted some AR tasks. The dynamic procedurewaid
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tasks gathering in some fast clouds. We believetiieadynamic procedure works even better in a lggmeous
cloud system, in which every task runs faster med&inds of VMs than in some other kinds.

12
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Fig. 8. Average application execution time in tight situation

Table 5
Average application execution time with variousgeertages of AR applications in the tight situation
(x=0.8).

0% 20% 50% 80% 100%
FCFS 1 1 1 1 1
DCLS 0.63 0.55 0.49 0.43 0.38
DCMMS 0.51 0.38 0.32 0.30 0.27

In order to find out the relationship between resewcontention and feedback improvement, we ineréas
resource contention by reducing the arrival timp batween two adjacent applications. We reduceattiisal
time gap by 20, 40, 60, 80, and 100 times, resgalgti In the setting with original arrival time gapn
application usually come after the former applimatis done. Resource contention is light. And whenival
time gaps are reduced by 100 times, it means dtine@xecution of an application, there may be iplalnew
applications arriving. Resource contention is heavthis case. As shown in Table 3, the improvenuenised
by feedback procedure increases as the resourtentimm become heavier.

We also test our proposed algorithms in setups wéifious percentages of AR applications, as shawn i
Tables 4 and 5. The values in the first row reprehew many applications are set as the AR apjpdicat The
values in the second, the third, and the fourth aovthe average application execution time, nazadlby the
corresponding execution time with the FCFS algarit-rom these two tables, we can observe that highe
percentage ofAR applications leads to a better improvement ef@iL.S and the DCMMS algorithm, compared
to the FCFS algorithm, in both the loose situatamd the tight situation. The reason is that more AR
applications cause longer delays of the best-e#fjpplications. By using the feedback informatiom; DLS and
DCMMS can reduce workload unbalance, which is tlagomdrawback of the FCFS algorithm.

Furthermore, we compare the energy consumptiohregttalgorithms, shown in Figs. 9 and 10. Both DCLS
and DCMMS can reduce energy consumption compareideté-CFS algorithm. In addition, our energy-aware
local mapping further reduce the energy consumgignificantly, in all three algorithms.

In the future work, we will evaluate our proposedamanism in existing simulators, so that results lba
reproduced easier by other researchers. In additierwill investigate the implementation of our idesin the
real-world cloud computing platform. A reasonablayto achieve this goal is to combine our desigth wie
Hadoop platform. The multi-cloud scheduling meckanand algorithms in our design can be used otiofhe
of the Hadoop platform, distributing applications the federated multicloud platform. When a givektés
assigned to a cloud, the Hadoop will be used twillige tasks to multiple nodes. And our proposeedrgy-
aware local mapping design can be implemented enHadoop Distributed File System, which enables the
“rack awareness” feature for data locality inside data center.
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V. CONCLUSION

The cloud computing is emerging with rapidly grogioustomer demands. In case of significant client
demands, it may be necessary to share workloads@maltiple data centers, or even multiple clouavjers.
The workload sharing is able to enlarge the respool and provide even more flexible and cheagsources.

In this paper, we present a resource optimizaticechranism for preemptable applications in federated
heterogeneous cloud systems. We also propose twel naline dynamic scheduling algorithms, DCLS and
DCMMS, for this resource allocation mechanism. Eipental results show that the DCMMS outperforms
DCLS and FCFS. And the dynamic procedure with ugdianformation provides significant improvement in
the fierce resource contention situation. The epeasgare local mapping in our dynamic schedulingathms
can significantly reduce the energy consumptiorthénfederated cloud system.
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