Available Online at www.ijcsme.com

I nter national Jour nal of Computer Science and M obile Computing

A Monthly Journal of Computer Science and | nformation Technology
ISSN 2320-088X
[JCSMC, Vol. 2, Issue. 7, July 2013, pg.36311

RESEARCH ARTICLE|

Automated M odel-Based Test Path
Generation from UML Diagramsvia Graph
Coverage Technigues

Parampreet Kaur', Gaurav Gupta®
'Computer Engineering, University College of Engitireg, Punjabi University, Patiala, India
“Computer Engineering, University College of Engitireg, Punjabi University, Patiala, India

! paramnagpal 16@gmail .com; 2 gaurav_shakti @yahoo.com

Abstract— UML State Chart Diagrams are the basic deds used to derive test paths from intermediate
graphs generated automatically using graph coveragehniques in addition to the tool support provitiby
MBT Tool TestOptimal's Basic as well as ProMBT vers. The test Paths Generated covers Node Coverage,
Edge Coverage, Edge Pair Coverage as well as mopbrtantly Prime Path coverage which is till todanpt
explored much. The algorithm employed is Prefix leaiscombined with Chinese postman Problem Algorithm
together. From State charts, first of all Model Cerage Graphs are constructed with help of TestOmlrand
then Test Paths are generated one by one. Testingfien incomplete, i.e. cannot cover all possibiestem
behaviours. There are several heuristic means toasure the quality of test suites, e.g. fault deteot
mutation analysis, or coverage criteria. These measf quality measurement can also be used to degiien

to stop testing. This paper is centred upon coveragiteria. There are many different kinds of coage
criteria, e.g. focused on data flow, control flowansition sequences, or boundary values. In thiager, we
will present new approaches, e.g. to combine cogerariteria and generation of test paths manuallg well

as automatically using tools based on Chinese paatrand prefix based algorithms.

Key Terms: - SUT; TestOptimal; State charts; MECSTG

. INTRODUCTION

The work on this paper is focused on functional etdrhsed testing. Functional testing is associaiitll
verifying of the system under test (SUT) with at®afre Requirement Specification (SRS). A functiotest
detects a failure if the observed and the spectiieltviour of the SUT do not match. Model-basetingss
about using models as specifications. The mostlécteally challenging part of testing is the desiof test
cases. Test cases are usually generated basedgnamrsource code. An alternative approach is teigde
test cases from specifications developed usingdtisms such as UML models. In this approach, tases are
developed during analysis or design stage itseléfepably during the low level design stage. Design
specifications are intermediate artefacts betweguirement specification and final code. They pnesehe
essential information from the requirement, andtheebasis of code implementation. Test case ggoeri@om
design specifications has the added advantagel@fiag test cases to be available early in thevsafé
development cycle, thereby making test planningenedfective. It is therefore desirable to genetagt cases
from the software design or analysis documentsdadition to test case design using the code. Ulsiéed
automatic test case generation is a practicallyoimamt and theoretically challenging topic. Liter& survey

© 2013, IJICSMC All Rights Reserved 302

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

indicates, testing based on UML specificationseieiving an increasing attention from researchetke recent
years. In using UML in the software testing procésse we focus primarily on the state chart diagravhich

are then modelled into corresponding coverage M@ephs as well as Test Sequence Graphs instead of
simply converting into FSMs. Model-based testingates tests from abstract models of the softwanesd
models are often described as graphs, and tesireements are defined as sub paths in the graphs step
toward creating concrete tests, complete test gatitsinclude the sub paths through the graph aremted.
Each test path is then transformed into a testeltan generate fewer and shorter test paths,odteo€ testing

can be reduced. The minimum cost test paths protddinding the test paths that satisfy all teguieements

with the minimum cost.

Il. LITERATURE SURVEY

AGEDIS (Automated Generation and Execution of T®gites in Distributed Component based Software)
was a three-year research project on the automafi@oftware testing funded by the European Unieine
case studies were conducted. These studies foamsagplying model based testing methods and tootest
problems in industrial settings. The studies wenedcicted at France Telecom, Intrasoft and IBM. filngings
showed that models increased the comprehensibilithe system under test and was found to be aciesft
way to analyse complex requirements. It was alsmdathat when a requirement changed, adapting tiaem
and regenerating the test cases required less$ effimpared to updating manually constructed testsgl1].

Several researches have productively proposedctsst generation for various softwares under diftere
circumstances, such as scenario-based, model bapath-oriented, goal-oriented and genetic
approaches .Scenario based techniques test casbasad on concurrent approach of coverage critdodel
based techniques identify respective test caseshtorsoftware with respect to the UML diagrams sash
sequence, activity, state-chart, class or objeagrdim etc. Path-oriented testing is based on satiwell as
dynamic control flow of the software. Static pa#isting is done by symbolic execution whereas dyograth
testing is based on the run time test of execytimgram. Goal-oriented techniques identify tesesavering
a selected goal such as a statement or branchpéttve of the path taken. Many researchers antbddes
have been working in field of software testing tosis|ageneration of test cases. Among the surveytsesniost
of them use modelling language to generate tesscadince Unified Modelling Language is a standzdli
general-purpose modelling language in the fieldajffware engineering. UML diagrams represent tvifeigint
views of a system model static and dynamic. S{aticstructural) view: emphasizes the static stngctf the
system using objects, attributes, operations aladioaships. The structural view includes clasgycians and
composite structure diagrams. Dynamic or behavlotieav: emphasizes the dynamic behaviour of theesys
by showing collaborations among objects and changee internal states of objects. This view ides
sequence diagrams, activity diagrams and stateinedragrams.

Sanjai [1] presented a method for automaticallyegeting test cases to structural coverage critéti.
showed how, given any software development artifiaat can be represented as a finite state modabadel
checker can be used to generate complete test tiaeprovide a predefined coverage of that artifate
provided a formal framework that is: (a) suitale defining their test-case generation approach(bhéasily
used to capture finite state representations dfveoé artifacts such as program code, softwareifsgeons,
and requirements models. He showed how commontstalccoverage criteria can be formalized in their
framework and expressed as temporal logic formulsed to challenge a model checker to find testscase
Finally, he demonstrated how a model checker canseel to generate test sequences for modified tomdi
and decision coverage. Their approach is to gemégat cases using the model checker as the cgieeer\ set
of properties called trap properties, is generated the model-checker is asked to verify the ptegzeone by
one. These properties are constructed in such gheayhey fail for the given system specification.

Aynur [2, 3] defined the following definition in dir work: (a) test requirements are specific thitiget must
be satisfied or covered during testing and (b) $pstifications are specific descriptions of testes including
test data, often associated with test requiremamntsiteria. They presented a test data generatiethod, based
on Offut’s state-based technique, to prepare amergée a set of data from UML state charts diagréiney
proposed to use the TSL language to describe exthehts of a test case, like input, output and predition.
However, they concentrate on the following elemeli& precondition values (b) verify values (c) texi
command and (d) expected output data. Generalbgetielements are directly derived from triggeringres
and pre-conditions in the state chart diagram. dreecondition values include all required inputadany input
data, which are required to show the results, lageverify values. The exit commands are dependethen

© 2013, IJICSMC All Rights Reserved 303

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

system or program being tested. The expected oulgat are created from the after-values of theyéripg
events and post conditions.

Samuel [6] presented an approach to generatedgsesces from the UML sequence diagrams, versian 2.
UML Sequence diagrams are one of the most widedyg u$ML models in the software industry. They found
that existing test sequence generation techniqoesodl encompass certain important features of tML U
sequence diagrams, version 2.0. Thus, they propaseeffective method to generate a set of testssbsp
considering many key features of UML sequence diagwersion 2.0, like loop, alt and break feature.

M.Prasanna et al. (2009) describes that to tesftavare, test cases generation is best way. Theaésses are
derived by analyzing the dynamic behaviour of thgects due to internal and external stimuli [5]siTeases
can be generated with the help of UML diagrams.eReshers use model based approach in which genetic
algorithms crossover technique is applied on thesctliagram and the traversal is done by the degtlsearch
(DFS) algorithm. This tree structure approach cedplith genetic algorithm shows that it is capéableeveal
80% faults in unit level and 88% faults in integoatlevel. They coupled the genetic algorithm witlatation
testing to check the effectiveness in the testiraggss which shows 80.3% of effectiveness. Theltrebows
methodology is useful to generate test cases thaiéecompletion of the design phase and error coeldetected
at an early stage in software development lifeeycl

Automatic test case generation using unified maugllanguage (UML) state diagrams by P. Samuel, R.
Mall, A.K. Bothra published on basis of model basest case generation automatically. They explanatieir
approach, the control and data flow logic availabléhe UML state diagram to generate test data Jtate
machine graph is traversed and the conditionalipaégs on every transition are chosen. Then thesditonal
predicates are transformed and functional mininozatechnique is applied to generate test cases.pfésent
test data generation scheme is fully automatic thiedgenerated test cases satisfy transition pathrage
criteria. The generated test cases can be usedttolass as well as cluster-level state-deperimhaviours [5].
Test data generated fusing this approach is vdrfesed on the path coverage. The step involvedtadirst
step is to select a predicate. In this, selectedipate on a transition from a UML state machiregdim. The
next step is to transform the selected predicata fwedicate function. In the third step, genetast data
corresponding to the transformed predicate funcfidris Approach can handle change events, timeteamd
transitions with guards, and achieves transitiach paverage.

Dirk Seifert [4] presented in Test Case Generafiiom UML State Machines that test cases includeomby
stimuli to trigger the SUT, they also include pb#sicorrect observations to automatically evaltlagetest case
execution. In comparison to classical Harel Stagrts, state machines behave in asynchronous maninieh
makes automatic test case generation a challenge. TEAGER Tool Suite implements the automatic
generation, execution and evaluation of test casdsproves the applicability of test approachs Ipassible to
select relevant and interesting inputs for a taseand to calculate the possible correct obsensafor given
inputs. They allow to automatically evaluating tegecutions which is a difficult and time consumiagk.
Applied approximation makes the generation progesstical, whereas it is possible to control thisgess
depending on the time and computation power toshve

Automated-Generating Test Case Using UML Statetdbegrams by Supaporn Kansomkeat and Wanchai
Rivepiboon experimented on the automatic testinthriegue to solve partially the testing process.sThi
technique can automatically generate and seletcéses from UML state chart diagrams. Firstlyngfarm
this diagram into intermediate diagram, called irgsFlow Graph (TFG), explicitly identify flows oML
state chart diagrams and raise them for testingor@8y, from TFG generate test case using thenggstiiteria
that is the coverage of the state and transitiodiagrams. Finally, the evaluation is performechgsnutation
analysis to assess the fault revealing power ofceeses [7]. Specification based testing usesnmdtion derived
from a specification to assist testing as well@slévelop program. Testing activities consist afigeing test
cases that are a sequence of inputs, executingrtfggam with test cases, and examining the repotiduced
by this execution. Automatically generate test safem UML specification with the aid of the Rat&n
Software Corporation’s Rational Rose tool. Tesesase measured the effectiveness on the badigioffault
detection abilities. Results of simple test experits are high effectiveness of the generated ésstsc However,
extensive experiments are needed to have moredemafe of the testing technique and to comparetit ether
techniques in term of cost and effectiveness.

Ranijit Swain, Vikas Panthi, Durga Prasad (2012Zhair paper presented different techniques to geadhe

test cases to test the software. The functionalmimation technique is also used to generate tbed@ses. In
this technique first predicate is selected and themsformed to create test cases. The functiomaiimization

© 2013, IJICSMC All Rights Reserved 304

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

technique is used for finding the minimum of predié function. In this approach the test cases anergted
step by step. Here the object diagram that is fisedenerating the test cases is state machineadiagrhis
approach covers state coverage, transition paierage, action coverage. The numbers of test cases a
minimized that achieve transition path coveragetdsting the borders determine by simple predictions
found that test cases are generated from the othjggtam by minimizing the cost and time. It casoahandle
transitions with guards and achieves transitioh paverage [8].

Stephan Weissleder [10] proposed that UML statehnas are widely used as test models in model based
testing. Coverage criteria are applied to them, ®.gneasure a test suite’s coverage of the stathime or to
steer automatic test suite generation based ost#te machine. The model elements to cover asidedcby
the applied coverage criterion depend on the straaf the state machine. Model transformationshmunsed
to change this structure. He presented semantiseprieg state machine transformations that are wsed
influence the result of the applied coverage detefhe contribution is that almost every feasibtaerage
criterion that is applied to the transformed statchine can have at least the same effect as apy feasible,
possibly stronger coverage criterion that is agplie the original state machine. Simulated satigfacas a
corresponding relation between coverage criterimti®duced. He provided formal definitions for eoage
criteria and used them to prove the correctnest®fmodel transformations that substantiate theulsired
satisfaction relations. The results are especiaipyortant for model-based test generation tooldckwhre often
limited to satisfy a restricted set of coveragéecia.

Utting and Legeard [11] presented four test gef@raapproaches in model-based testing: 1) Generatio
test input data from a domain model, 2) Generatiotest cases from an environment model, 3) Geiveraif
test cases with oracles from a behavior model, n@eneration of test scripts from abstract teBke first
three approaches are all based on test generationd model. The domain model describes the domafins
input data that can be given to the system andeth@ronment model the expected environment, such as
operation frequencies, of the SUT. Both models lmamsed to generate input for the SUT, but eitloescdot
include the expected output of the system, thusiineg manual work for verification. The third mdde
behavioural model, includes oracle information dlibe expected behavior of the system and canlibussed
to detect any irregularities in the output of tHéTSautomatically. The forth approach does not idelunodels
as such, but rather test cases that are describea high-level of abstraction, without the low-leve
implementation details. Basically a script defineith high-level keywords could be categorized as fiburth
approach.

Ill. RESEARCH CRITERIA

Figure shows taxonomy for model-based testing ihaaken from [9]. It describes the typical aspewfts
model-based test generation and test executiofiodtss is on the various kinds of models and testegation
technigques. We use this taxonomy to position oasith The subject of our test models is the SUTe fHst
models are separate from the development modetthdfmore, the used test models are deterministitmed,
and discrete. The paradigm of the test model isstti@n-based, i.e. with a guided depth-first gragglarch
algorithm. Satisfying structural model coveragaus&®d to steer the test generation. The searchdkxgynis
based on a combination of graph search algorithch ymbolic backward execution. The test execut®n i
mainly offline although online.

© 2013, IJICSMC All Rights Reserved 305

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

- Environment
1 Subject

] Shared test&dev model
—1 Redundancy
—_— Separate test model
Model , — " Non-Det.
— Characteristicsf—<

— Timed / Untimed
~— Discrete / Hybrid / Continuous

— Pro=Pgst
/— !r_ansition—Based
| Paradigm 4‘\/:" — Functional

— Operational

~——

~| Structural Model Coverage |
~—— Data Coverage
Test Selection ~—— Requirements Coverage
Criteria —___ Test Case Specifications
 Randomé&Stochastic
Test ~ Fault-Based

| Generation

~— Manual

Technology

— Theorem proving

Test
| Execution 7 Online m

Fig: Flowchart Taxonomy aécording to Utting, Préatser, Legeard [9]

IV. TEST PATH GENERATION ALGORITHM

The description of the abstract test case generatgorithm, whose purpose is the creation of atrabt test
case with abstract information about inputs, isseréed here. The algorithm starts at a certaint poithe test
model. From that point, the algorithm iterates lveanld in the state machine to the initial configimatwith a
guided depth-first graph search process and createsrresponding path. While moving backward, the
algorithm collects all conditions and keeps thera tonsistent set of dataflow information.

TestCase createTestCase(te : TraceExtension)

{

n = target node of the last transition of te;
TestCase tc = searchBackwardsFromNode(n, te);
if(tc is a valid test case)

{

return tc;

}

else {

return null;

}

}

}

TestCase searchBackwardsFromNode(n : Node, @ceExtension) {
if(n is initial node and all expressions are $ety

{ /I valid

return test case that contains the current pédhnation;

© 2013, IJICSMC All Rights Reserved 306

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

}

TestCase tc = null;
if(n has a transition t that is part of te)

{

tc = traverseTransition(t, te);
if(tc = null)

return tc;

}

Else

{

for each incoming transition t of n {
tc = traverseTransition(t, te);

if(tc = null)
return tc;

}

}

return null;
}

V. TooL UseD: TESTOPTIMAL

TestOptimal is an integrated next-generation testgh and test automation toolset powered by M8asked
Testing (MBT). Unlike QTP and TestComplete, Tesi@pt helps to bring agility and efficiency to thesting
process and shorten the testing cycle. TestOp@asicMBT, ProMBT, Enterprise, RuntimeMBT are a swf
model-based test automation tools for functionatihg and load/performance testing. TestOptimal Woss
Model- Based Testing (MBT) and Data-Driven Test{BdT) to provide a powerful test case generatiod an
test automation tool. MBT enables to find defedslier in the development cycle and respond to ghan
quickly and efficiently. Tracks requirement covezaand visualize test cases in various graphs. @hoos of
many algorithms to generate test sequences foredetgst coverage. Re-purpose same models and aitom
scripts for load and performance testing. TestOgitinnan help reduce development cycle, achieve
unprecedented test coverage and improve respordeihges while gaining higher confidence in yodtvsare
delivery. TestOptimal is a web based client setwet that tests desktop and multitier enterprisgliagtions. A
TestOptimal model is an FSM, created interactiwghjle analyzing the web site being tested. It ckwo de
imported in GraphML9, XMI10 and GraphXML11 formatestOptimal provides model validation, simulation
and debugging support. It provides an XML baseé8og language called mScript to connect adaptieed
of the model to the SUT. A tester can test do stertasting using mCase. TestOptimal provides midti
algorithms to generate test cases and supporteeonlid offline testing. It can be used for strésad and
regression testing. can add function logic to ranegated test cases.

1) Test Generation
From this model, we then generate the series afesenps i.e. transition traversals which will watkaugh
different web pages and cover all transitions ertiodel. To do this, we select the Optimal Sequeindglodel

Property. From above model, to generate the tegtesees click or#* to display the test sequence in Traverse
Graph.
2) Test Automation and Execution

Test sequence is just a series of steps .We caindgrfollow this sequence by manually clickingetiveb
pages to test. With TestOptimalne can automate this with a set of simple mSceptXML based scripting.
With the model and mScript, one can execute theeinadd test the application by clicking on the huriton
and watch the web pages being clicked away autoaibti

© 2013, IJICSMC All Rights Reserved 307

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

[
L
114
*
ContinueShapping i
n = _ ShoviShoppingCart
VievDetail PraductDetail j#—
A
Removaltem
lad
4 I She (P 5 i
7| ShowshoppingCart - State/Transition Trea View X
bart —_—————— . . g — "
& T Productlist - 5 i
Additem . | ShopeingCart |
M E148) Checkout
S GontinueShopping) ContinuaShapping — Frodu
c 3) ;@ Pay ~ ThankYou
Order §

) ShowshepsingCart -~} ShovBhoppingCart = Shop)

B4 End

— B ProductDatail
o i 3149 ProductList
il CentinueShopping Shena 518 ShoppingCart

B4 Start

i L start — Productlist

18 Thankveu

e i | bl

Fig 25: Statechart of Webstore — online shoppitey si

Checkout End ProductDetail ProductList ShappingCart

Start

®

Fig 26: Test Sequence Graph (TSG)
®

Start Checkaut
5

ContinugShopping

start

PraductList
g -

WiewDetail s "
i ShowShoppingCan Ordar

ContinueShopping

ppingGart ProductDetail
3

Additem

ContinueShopping

ShowShoppingCart

ShappingCart
4

Emoveltam

Fig 32 : Model Execution Coverage Graph (MECG)

© 2013, IJCSMC All Rights Reserved 308

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

According to the algorithm applied, 5 test Patlesganerated for edge coverage:

Test Paths Generated TPs
Tp-1 1,2,6
Tp-2 112141512!412!
Tp-3 1,2,45,45,2,6
Tp-4 1,2,3,4,5,4,2,3,4,2
Tp-5 1,2,4,5,2,3,4,2,
But by using Tool that uses Prefix Graph algoritfan edge-pair coverage, following test paths haserb
generated.
6 test paths are needed for Edge-Pair Coverage Bsefx Graph
Test Path Test Requirements that are toured by paths directl
[1,2,3,4,2,4,2,4,5,4,2,6] [1,2,3], [2,3,4], [3,4,2], [4,2,4], [4,2,4], [4,4,82,4,2], [2,4,5], [2,4,2], [2,4,5], [4,5,4], [8,2]
[1,2,4,5,2,4,2,6] [1,2,4], [1,2,4], [4,2,6], [2,4,2], [2,4,5], [2,4,42,4,5], [4,5,2], [5,2,4], [5,2,4]
[1,2,4,5,4,5,2,6] [1,2,4], [1,2,4], [2,4,5], [2,4,5], [4,5,2], [4,9.45,2,6], [5,4,5]
[1,2,6] [1,2,6]
[1,2,3,4,5,4,2,3,4,2,6] [1,2,3], [2,3,4], [3,4,2], [3,4,5], [4,2,3], [4,2,d4,5,4], [5,4,2]
[1,2,4,5,2,3,4,2,6] [1,2,4], [1,2,4], [2,3,4], [3,4,2], [4,2,6], [2,4,92,4,5], [4,5,2], [5,2,3]

[4]

o« I 1l I L]
Edge-Pair Coverage using... Scale
[an120 = L] -]

Fig: Edge-Pair Coverage using Prefix Graph method.

Prime-Path coverage: Generating Test Paths

Test Paths Prime-Path coverage Test Paths
Tp-1 1,2,4,2,3,4,2,

Tp-2 1,2,3,4,5,2,

Tp-3 1,2,4,5,2,3,4,5,2,6

Tp-4 1,2,45,2,3,4,2,6

Tp-5 1,2,4,2,4,2,

Tp-6 1,2,3,4,5,2,3,4,2,6

Tp-7 12,6

© 2013, IJICSMC All Rights Reserved 309

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

13 Test paths are needed for Prime Path Coverage

Test Path
[1,2,3,4,5,2,3,4,2,
[1,2,3,4,5,2,€
[1,2,4,5,2,3,4,5,2,
[1,2,4,5,2,3,4,2,¢
[1,2,3,4,2,3,4,2,¢
[1,2,4,2,3,4,2,¢
[1,2,4,5,2,4,5,2,¢
[1,2,4,5,4,2,3,4,2,
[1,2,4,5,4,2,€
[1,2,4,5,2,4,2,¢
[1,2,4,2,4,2,€
[1,2,6]
[1,2,4,5,4,5,2,¢

Test Requirements that are toured by test patestd
[3,4,5,2,3], [2,3,4,5,2], [1,2,3,4,5], [4,5,2,3,43,4,2,6], [2,3,4,2
[2,3,4,5,2], [1,2,3,4,5], [3,4,5,2,

[2,3,4,5,2], [3,4,5,2,6], [5,2,3,4,5], [4,5,2,3,/2,4,5,2], [1,2,4,5
[4,5,2,3,4, [3,4,2,6], [2,4,5,2], [1,2,4,5], [2,3,4.

[3,4,2,6], [3,4,2,3], [4,2,3,4], [2,3,4,

[3,4,2,6], [4,2,3,4], [2,3,4,2], [2,4,

[2,4,5,2],[1,2,4,5], [5,2,4,5], [4,5,2,

[3,4,2,6], [4,2,3,4], [1,2,4,5], [2,3,4,2], [5,4R, [4,5,4
[1,2,4,5], [5,4,2,6], [4,5,

[2,4,5,2],[1,2,4,5], [4,5,2,4], [2,4,

[4,2,4], [2,4,2

[1,2,6]

[1,2,4,5],[5,4,5], [4,5,4

Thus Automatic Generation leads to more test caeepaths thus resulting in efficient and effectiesting
strategy. The above automatic Generation of TettsRare based on prefix graph algorithms which coeth
edge pair as well as prime path coverage criteribderive their concept using Chinese postman ihgor

VI. CONCLUSIONS AND FUTURE WORK

Models are an excellent way to represent and utatetssystem behavior, and they provide an easytway
update tests to keep pace with applications tletanstantly changing and evolving. Testing anieafbn can
be viewed as traversing a path through the grapheoinodel. Graph theory techniques therefore aliswo
use the behavioural information stored in modelgy¢émerate new and useful tests. Because graphytheor
techniques deal directly with the model so new draals can be automatically generated when the Imode
changes. Tests can be constantly changing on the s#odel. Different types of traversals can me#emint
needs of testers. The traversal techniques arerglemed can be re-used on different models. Modskt
testing is a black-box technique that offers madyaatages over traditional testing: Firstly, Consting the
behavioural models can begin early in the developrogcle. Secondly, Modelling exposes ambiguitieshie
specification and design of the software. The maebodies behavioural information that can be edus
future testing, even when the specifications chamdgreover the model is easier to update than & «fi
individual tests. And, most importantly, a modetrfishes information that can be coupled with grépory
technigues to generate many different test scemartitomatically.

Testing benefits from the fact that the real systerrought to execution. Thus, the interactiortref real
hardware and the real software can be evaluatedmi in falsification, i. e. to show inconsisteaagibetween
the specification and developed system. Testirgpdicable at different levels of abstraction andlifferent
stages of the development. With our approach UMLtestnachines can be used in the quality assurarserie
as a specification for the desired reactive behavid the system. It is possible to select relexant interesting
inputs for a test case and to calculate the passibirect observations for given inputs. They alltw
automatically evaluating test executions whichrisgeneral a difficult and time consuming task. Agxqbl
approximation makes the generation process préactica

Our technique achieves much important coverage dikte coverage, transition coverage, transition pa
coverage, Prime path coverage. It can handle transiwith guards and achieves transition path e .Here
the number of test cases is minimized and they eaehitransition path coverage by testing the
boundaries. Moreover, our planning is to includeeotdiagrams of UML to generate test cases. Inréutune
will look into how the test cases can be optimizedi how other UML diagrams can be combined and used
to generate test cases and achieve higher coverage.

© 2013, IJICSMC All Rights Reserved 310

(1

(2]

(3]
(4]

(3]
(6]

(7]
(8]

19

Parampreet Kauat al, International Journal of Computer Science and MoBibmputing Vol.2 Issue. 7, July- 2013, pg. 302-31

REFERENCES

Sanjai Rayadurgam and Mats P. E. Heimdahl, -Sequence Generation from Formal Requent
Models”, Proceedings of the 6th IEEE Internatiorymposium on High Assurance Systems
Engineering (HASE'01), 2001.

Jeff Offutt, Shaoying Liu, Aynur Abdurazik and P&hmann, “Generating Test Data from State-based
Specifications”, ISE Department, George Mason Ursitg, USA, 2003.

Aynur Abdurazik and Jeff Offutt, “Generating Tesaggs from UML Specifications”, 1999.

Dirk Seifert, "Test Case Generation from UML Stdechines"”, inria-00268864, version 2 - 23 Apr
2008.

M. Prasanna, K.R.Chandran, “Automatic Test Casee@eion for UML Object Diagrams Using
Genetic Algorithm”, Int. J. Advance. Soft compupp., vol.1, no. 1, July 2009, pp. 19-32.

Philip Samuel and Anju Teresa Joseph, “Test Sequ&eneration from UML Sequence Diagrams”,
Ninth ACIS International Conference on Software iBegring, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2008.

Supaporn Kansomkeat and Sanchai Rivepiboon, "AukxraGenerating Test Case Using UML
Statechart Diagrams ",SAICSIT 2003.

Ranijit Swain, Vikas Panthi, Prafulla Kumar Beheairga Prasad Mahapatra, “Automatic Test Case
Generation Based on State Machine Diagram”, Intemal Journal of Computer Information Systems,
vol.4, no.2, 2012, pp. 99-124.

Mark Utting, Alexander Pretschner, and Bruno Lededr taxonomy of model-based testing. Working
Papers 2006. Department of Computer Science, Theetsity of Waikato (New Zealand), April 2006.

[10] Stephan Weissleder, Simulated Satisfaction of GameerCriteria on UML State Machines, Third

International Conference on Software Testing, \¥eatfon and Validation, 2010.

[11] Mike Barnett, Wolfgang Grieskamp, Lev Nachmansoricrbsoft Research, One Microsoft Way,

Redmond, WA 98052, USA.

© 2013, IJICSMC All Rights Reserved 311

