
Available Online at www.ijcsmc.com

International Journal of Computer Science and Mobile Computing

A Monthly Journal of Computer Science and Information Technology

ISSN 2320–088X

 IJCSMC, Vol. 2, Issue. 7, July 2013, pg.302 – 311

RESEARCH ARTICLE

© 2013, IJCSMC All Rights Reserved 302

Automated Model-Based Test Path
Generation from UML Diagrams via Graph

Coverage Techniques

Parampreet Kaur1, Gaurav Gupta2
1Computer Engineering, University College of Engineering, Punjabi University, Patiala, India
2Computer Engineering, University College of Engineering, Punjabi University, Patiala, India

1 paramnagpal16@gmail.com; 2 gaurav_shakti@yahoo.com

Abstract— UML State Chart Diagrams are the basic models used to derive test paths from intermediate
graphs generated automatically using graph coverage techniques in addition to the tool support provided by
MBT Tool TestOptimal’s Basic as well as ProMBT version. The test Paths Generated covers Node Coverage,
Edge Coverage, Edge Pair Coverage as well as most importantly Prime Path coverage which is till today not
explored much. The algorithm employed is Prefix based combined with Chinese postman Problem Algorithm
together. From State charts, first of all Model Coverage Graphs are constructed with help of TestOptimal and
then Test Paths are generated one by one. Testing is often incomplete, i.e. cannot cover all possible system
behaviours. There are several heuristic means to measure the quality of test suites, e.g. fault detection,
mutation analysis, or coverage criteria. These means of quality measurement can also be used to decide when
to stop testing. This paper is centred upon coverage criteria. There are many different kinds of coverage
criteria, e.g. focused on data flow, control flow, transition sequences, or boundary values. In this paper, we
will present new approaches, e.g. to combine coverage criteria and generation of test paths manually as well
as automatically using tools based on Chinese postman and prefix based algorithms.

Key Terms: - SUT; TestOptimal; State charts; MECG; STG

I. INTRODUCTION
The work on this paper is focused on functional model-based testing. Functional testing is associated with

verifying of the system under test (SUT) with a Software Requirement Specification (SRS). A functional test
detects a failure if the observed and the specified behaviour of the SUT do not match. Model-based testing is
about using models as specifications. The most intellectually challenging part of testing is the design of test
cases. Test cases are usually generated based on program source code. An alternative approach is to generate
test cases from specifications developed using formalisms such as UML models. In this approach, test cases are
developed during analysis or design stage itself, preferably during the low level design stage. Design
specifications are intermediate artefacts between requirement specification and final code. They preserve the
essential information from the requirement, and are the basis of code implementation. Test case generation from
design specifications has the added advantage of allowing test cases to be available early in the software
development cycle, thereby making test planning more effective. It is therefore desirable to generate test cases
from the software design or analysis documents, in addition to test case design using the code. UML-based
automatic test case generation is a practically important and theoretically challenging topic. Literature survey

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 303

indicates, testing based on UML specifications is receiving an increasing attention from researchers in the recent
years. In using UML in the software testing process, here we focus primarily on the state chart diagrams which
are then modelled into corresponding coverage Model Graphs as well as Test Sequence Graphs instead of
simply converting into FSMs. Model-based testing creates tests from abstract models of the software. These
models are often described as graphs, and test requirements are defined as sub paths in the graphs. As a step
toward creating concrete tests, complete test paths that include the sub paths through the graph are generated.
Each test path is then transformed into a test. If we can generate fewer and shorter test paths, the cost of testing
can be reduced. The minimum cost test paths problem is finding the test paths that satisfy all test requirements
with the minimum cost.

II. LITERATURE SURVEY
AGEDIS (Automated Generation and Execution of Test Suites in Distributed Component based Software)

was a three-year research project on the automation of software testing funded by the European Union. Five
case studies were conducted. These studies focused on applying model based testing methods and tools to test
problems in industrial settings. The studies were conducted at France Telecom, Intrasoft and IBM. The findings
showed that models increased the comprehensibility of the system under test and was found to be an efficient
way to analyse complex requirements. It was also found that when a requirement changed, adapting the model
and regenerating the test cases required less effort compared to updating manually constructed test cases [11].

Several researches have productively proposed test case generation for various softwares under different

circumstances, such as scenario-based, model based, path-oriented, goal-oriented and genetic
approaches .Scenario based techniques test cases are based on concurrent approach of coverage criteria. Model
based techniques identify respective test cases for the software with respect to the UML diagrams such as
sequence, activity, state-chart, class or object diagram etc. Path-oriented testing is based on static as well as
dynamic control flow of the software. Static path testing is done by symbolic execution whereas dynamic path
testing is based on the run time test of executing program. Goal-oriented techniques identify test cases covering
a selected goal such as a statement or branch, irrespective of the path taken. Many researchers and doctorates
have been working in field of software testing towards generation of test cases. Among the survey results, most
of them use modelling language to generate test cases. Since Unified Modelling Language is a standardized
general-purpose modelling language in the field of software engineering. UML diagrams represent two different
views of a system model static and dynamic. Static (or structural) view: emphasizes the static structure of the
system using objects, attributes, operations and relationships. The structural view includes class diagrams and
composite structure diagrams. Dynamic or behavioural view: emphasizes the dynamic behaviour of the system
by showing collaborations among objects and changes to the internal states of objects. This view includes
sequence diagrams, activity diagrams and state machine diagrams.

Sanjai [1] presented a method for automatically generating test cases to structural coverage criteria. He

showed how, given any software development artifact that can be represented as a finite state model, a model
checker can be used to generate complete test cases that provide a predefined coverage of that artifact. He
provided a formal framework that is: (a) suitable for defining their test-case generation approach and (b) easily
used to capture finite state representations of software artifacts such as program code, software specifications,
and requirements models. He showed how common structural coverage criteria can be formalized in their
framework and expressed as temporal logic formulae used to challenge a model checker to find test cases.
Finally, he demonstrated how a model checker can be used to generate test sequences for modified condition
and decision coverage. Their approach is to generate test cases using the model checker as the core engine. A set
of properties called trap properties, is generated and the model-checker is asked to verify the properties one by
one. These properties are constructed in such a way that they fail for the given system specification.

Aynur [2, 3] defined the following definition in their work: (a) test requirements are specific things that must

be satisfied or covered during testing and (b) test specifications are specific descriptions of test cases including
test data, often associated with test requirements or criteria. They presented a test data generation method, based
on Offut’s state-based technique, to prepare and generate a set of data from UML state charts diagram. They
proposed to use the TSL language to describe all elements of a test case, like input, output and pre-condition.
However, they concentrate on the following elements: (a) precondition values (b) verify values (c) exit
command and (d) expected output data. Generally, those elements are directly derived from triggering events
and pre-conditions in the state chart diagram. The pre-condition values include all required input data. Any input
data, which are required to show the results, are the verify values. The exit commands are depended on the

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 304

system or program being tested. The expected output data are created from the after-values of the triggering
events and post conditions.

Samuel [6] presented an approach to generate test sequences from the UML sequence diagrams, version 2.0.

UML Sequence diagrams are one of the most widely used UML models in the software industry. They found
that existing test sequence generation techniques do not encompass certain important features of the UML
sequence diagrams, version 2.0. Thus, they proposed an effective method to generate a set of test steps by
considering many key features of UML sequence diagram, version 2.0, like loop, alt and break feature.

M.Prasanna et al. (2009) describes that to test a software, test cases generation is best way. The test cases are

derived by analyzing the dynamic behaviour of the objects due to internal and external stimuli [5]. Test cases
can be generated with the help of UML diagrams. Researchers use model based approach in which genetic
algorithms crossover technique is applied on the class diagram and the traversal is done by the depth first search
(DFS) algorithm. This tree structure approach coupled with genetic algorithm shows that it is capable to reveal
80% faults in unit level and 88% faults in integration level. They coupled the genetic algorithm with mutation
testing to check the effectiveness in the testing process which shows 80.3% of effectiveness. The result shows
methodology is useful to generate test cases after the completion of the design phase and error could be detected
at an early stage in software development life cycle.

Automatic test case generation using unified modelling language (UML) state diagrams by P. Samuel, R.

Mall, A.K. Bothra published on basis of model based test case generation automatically. They explored in their
approach, the control and data flow logic available in the UML state diagram to generate test data. The state
machine graph is traversed and the conditional predicates on every transition are chosen. Then these conditional
predicates are transformed and functional minimization technique is applied to generate test cases. The present
test data generation scheme is fully automatic and the generated test cases satisfy transition path coverage
criteria. The generated test cases can be used to test class as well as cluster-level state-dependent behaviours [5].
Test data generated fusing this approach is verified based on the path coverage. The step involved are, the first
step is to select a predicate. In this, select a predicate on a transition from a UML state machine diagram. The
next step is to transform the selected predicate to a predicate function. In the third step, generate test data
corresponding to the transformed predicate function. This Approach can handle change events, time events and
transitions with guards, and achieves transition path coverage.

Dirk Seifert [4] presented in Test Case Generation from UML State Machines that test cases include not only

stimuli to trigger the SUT, they also include possible correct observations to automatically evaluate the test case
execution. In comparison to classical Harel State charts, state machines behave in asynchronous manner, which
makes automatic test case generation a challenge. The TEAGER Tool Suite implements the automatic
generation, execution and evaluation of test cases and proves the applicability of test approach. It is possible to
select relevant and interesting inputs for a test case and to calculate the possible correct observations for given
inputs. They allow to automatically evaluating test executions which is a difficult and time consuming task.
Applied approximation makes the generation process practical, whereas it is possible to control this process
depending on the time and computation power to invest.

Automated-Generating Test Case Using UML State chart Diagrams by Supaporn Kansomkeat and Wanchai

Rivepiboon experimented on the automatic testing technique to solve partially the testing process. This
technique can automatically generate and select test cases from UML state chart diagrams. Firstly, transform
this diagram into intermediate diagram, called Testing Flow Graph (TFG), explicitly identify flows of UML
state chart diagrams and raise them for testing. Secondly, from TFG generate test case using the testing criteria
that is the coverage of the state and transition of diagrams. Finally, the evaluation is performed using mutation
analysis to assess the fault revealing power of test cases [7]. Specification based testing uses information derived
from a specification to assist testing as well as to develop program. Testing activities consist of designing test
cases that are a sequence of inputs, executing the program with test cases, and examining the results produced
by this execution. Automatically generate test cases from UML specification with the aid of the Rational
Software Corporation’s Rational Rose tool. Test cases are measured the effectiveness on the basis of their fault
detection abilities. Results of simple test experiments are high effectiveness of the generated test cases. However,
extensive experiments are needed to have more confidence of the testing technique and to compare it with other
techniques in term of cost and effectiveness.

Ranjit Swain, Vikas Panthi, Durga Prasad (2012) in their paper presented different techniques to generate the

test cases to test the software. The functional minimization technique is also used to generate the test cases. In
this technique first predicate is selected and then transformed to create test cases. The functional minimization

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 305

technique is used for finding the minimum of predicate function. In this approach the test cases are generated
step by step. Here the object diagram that is used for generating the test cases is state machine diagram. This
approach covers state coverage, transition pair coverage, action coverage. The numbers of test cases are
minimized that achieve transition path coverage by testing the borders determine by simple prediction. It is
found that test cases are generated from the object diagram by minimizing the cost and time. It can also handle
transitions with guards and achieves transition path coverage [8].

Stephan Weissleder [10] proposed that UML state machines are widely used as test models in model based

testing. Coverage criteria are applied to them, e.g. to measure a test suite’s coverage of the state machine or to
steer automatic test suite generation based on the state machine. The model elements to cover as described by
the applied coverage criterion depend on the structure of the state machine. Model transformations can be used
to change this structure. He presented semantic preserving state machine transformations that are used to
influence the result of the applied coverage criteria. The contribution is that almost every feasible coverage
criterion that is applied to the transformed state machine can have at least the same effect as any other feasible,
possibly stronger coverage criterion that is applied to the original state machine. Simulated satisfaction as a
corresponding relation between coverage criteria is introduced. He provided formal definitions for coverage
criteria and used them to prove the correctness of the model transformations that substantiate the simulated
satisfaction relations. The results are especially important for model-based test generation tools, which are often
limited to satisfy a restricted set of coverage criteria.

 Utting and Legeard [11] presented four test generation approaches in model-based testing: 1) Generation of

test input data from a domain model, 2) Generation of test cases from an environment model, 3) Generation of
test cases with oracles from a behavior model, and 4) Generation of test scripts from abstract tests. The first
three approaches are all based on test generation from a model. The domain model describes the domains of
input data that can be given to the system and the environment model the expected environment, such as
operation frequencies, of the SUT. Both models can be used to generate input for the SUT, but either does not
include the expected output of the system, thus requiring manual work for verification. The third model,
behavioural model, includes oracle information about the expected behavior of the system and can thus be used
to detect any irregularities in the output of the SUT automatically. The forth approach does not include models
as such, but rather test cases that are described in a high-level of abstraction, without the low-level
implementation details. Basically a script defined with high-level keywords could be categorized as the fourth
approach.

III. RESEARCH CRITERIA
Figure shows taxonomy for model-based testing that is taken from [9]. It describes the typical aspects of

model-based test generation and test execution. Its focus is on the various kinds of models and test generation
techniques. We use this taxonomy to position our thesis: The subject of our test models is the SUT. The test
models are separate from the development models. Furthermore, the used test models are deterministic, untimed,
and discrete. The paradigm of the test model is transition-based, i.e. with a guided depth-first graph search
algorithm. Satisfying structural model coverage is used to steer the test generation. The search technology is
based on a combination of graph search algorithm and symbolic backward execution. The test execution is
mainly offline although online.

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 306

Fig: Flowchart Taxonomy according to Utting, Pretschner, Legeard [9]

IV. TEST PATH GENERATION ALGORITHM
The description of the abstract test case generation algorithm, whose purpose is the creation of an abstract test

case with abstract information about inputs, is presented here. The algorithm starts at a certain point in the test
model. From that point, the algorithm iterates backward in the state machine to the initial configuration with a
guided depth-first graph search process and creates a corresponding path. While moving backward, the
algorithm collects all conditions and keeps them in a consistent set of dataflow information.

TestCase createTestCase(te : TraceExtension)
 {
 n = target node of the last transition of te;
 TestCase tc = searchBackwardsFromNode(n, te);
 if(tc is a valid test case)
 {
 return tc;
}
else {
 return null;
}
 }
 }
 TestCase searchBackwardsFromNode(n : Node, te : TraceExtension) {
 if(n is initial node and all expressions are satisfied)
 { // valid
 return test case that contains the current path information;

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 307

 }
 TestCase tc = null;
 if(n has a transition t that is part of te)
{
 tc = traverseTransition(t, te);
 if(tc != null)
return tc;
 }
 Else
 {
 for each incoming transition t of n {
 tc = traverseTransition(t, te);
 if(tc != null)
return tc;
 }
 }
 return null;
 }

V. TOOL USED: TESTOPTIMAL
TestOptimal is an integrated next-generation test design and test automation toolset powered by Model-Based

Testing (MBT). Unlike QTP and TestComplete, TestOptimal helps to bring agility and efficiency to the testing
process and shorten the testing cycle. TestOptimal BasicMBT, ProMBT, Enterprise, RuntimeMBT are a suite of
model-based test automation tools for functional testing and load/performance testing. TestOptimal combines
Model- Based Testing (MBT) and Data-Driven Testing (DDT) to provide a powerful test case generation and
test automation tool. MBT enables to find defects earlier in the development cycle and respond to changes
quickly and efficiently. Tracks requirement coverage and visualize test cases in various graphs. Choose one of
many algorithms to generate test sequences for desired test coverage. Re-purpose same models and automation
scripts for load and performance testing. TestOptimal can help reduce development cycle, achieve
unprecedented test coverage and improve response to changes while gaining higher confidence in your software
delivery. TestOptimal is a web based client server tool that tests desktop and multitier enterprise applications. A
TestOptimal model is an FSM, created interactively while analyzing the web site being tested. It can also be
imported in GraphML9, XMI10 and GraphXML11 formats. TestOptimal provides model validation, simulation
and debugging support. It provides an XML based scripting language called mScript to connect adapter/driver
of the model to the SUT. A tester can test do scenario testing using mCase. TestOptimal provides multiple
algorithms to generate test cases and supports online and offline testing. It can be used for stress, load and
regression testing. can add function logic to run generated test cases.

1) Test Generation

From this model, we then generate the series of sequences i.e. transition traversals which will walk through
different web pages and cover all transitions in the model. To do this, we select the Optimal Sequencer in Model

Property. From above model, to generate the test sequences click on to display the test sequence in Traverse
Graph.
2) Test Automation and Execution

Test sequence is just a series of steps .We can certainly follow this sequence by manually clicking the web
pages to test. With TestOptimal, one can automate this with a set of simple mScript i.e. XML based scripting.
With the model and mScript, one can execute the model and test the application by clicking on the run button
and watch the web pages being clicked away automatically.

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 308

Fig 25: Statechart of Webstore – online shopping site.

.

Fig 26: Test Sequence Graph (TSG)

Fig 32 : Model Execution Coverage Graph (MECG)

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 309

According to the algorithm applied, 5 test Paths are generated for edge coverage:
Test Paths Generated TPs

Tp-1 1,2,6

Tp-2 1,2,4,5,2,4,2,6

Tp-3 1,2,4,5,4,5,2,6

Tp-4 1,2,3,4,5,4,2,3,4,2,6

Tp-5 1,2,4,5,2,3,4,2,6
But by using Tool that uses Prefix Graph algorithm for edge-pair coverage, following test paths have been

generated.
6 test paths are needed for Edge-Pair Coverage using Prefix Graph

Test Paths Test Requirements that are toured by test paths directly

[1,2,3,4,2,4,2,4,5,4,2,6] [1,2,3], [2,3,4], [3,4,2], [4,2,4], [4,2,4], [4,2,6], [2,4,2], [2,4,5], [2,4,2], [2,4,5], [4,5,4], [5,4,2]

[1,2,4,5,2,4,2,6] [1,2,4], [1,2,4], [4,2,6], [2,4,2], [2,4,5], [2,4,2], [2,4,5], [4,5,2], [5,2,4], [5,2,4]

[1,2,4,5,4,5,2,6] [1,2,4], [1,2,4], [2,4,5], [2,4,5], [4,5,2], [4,5,4], [5,2,6], [5,4,5]

[1,2,6] [1,2,6]

[1,2,3,4,5,4,2,3,4,2,6] [1,2,3], [2,3,4], [3,4,2], [3,4,5], [4,2,3], [4,2,6], [4,5,4], [5,4,2]

[1,2,4,5,2,3,4,2,6] [1,2,4], [1,2,4], [2,3,4], [3,4,2], [4,2,6], [2,4,5], [2,4,5], [4,5,2], [5,2,3]

Fig: Edge-Pair Coverage using Prefix Graph method.

Prime-Path coverage: Generating Test Paths

Test Paths Prime-Path coverage Test Paths
Tp-1 1,2,4,2,3,4,2,6
Tp-2 1,2,3,4,5,2,6
Tp-3 1,2,4,5,2,3,4,5,2,6
Tp-4 1,2,4,5,2,3,4,2,6
Tp-5 1,2,4,2,4,2,6
Tp-6 1,2,3,4,5,2,3,4,2,6
Tp-7 1,2,6

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 310

13 Test paths are needed for Prime Path Coverage

Test Paths Test Requirements that are toured by test paths directly

[1,2,3,4,5,2,3,4,2,6] [3,4,5,2,3], [2,3,4,5,2], [1,2,3,4,5], [4,5,2,3,4], [3,4,2,6], [2,3,4,2]

[1,2,3,4,5,2,6] [2,3,4,5,2], [1,2,3,4,5], [3,4,5,2,6]

[1,2,4,5,2,3,4,5,2,6] [2,3,4,5,2], [3,4,5,2,6], [5,2,3,4,5], [4,5,2,3,4], [2,4,5,2], [1,2,4,5]

[1,2,4,5,2,3,4,2,6] [4,5,2,3,4], [3,4,2,6], [2,4,5,2], [1,2,4,5], [2,3,4,2]

[1,2,3,4,2,3,4,2,6] [3,4,2,6], [3,4,2,3], [4,2,3,4], [2,3,4,2]

[1,2,4,2,3,4,2,6] [3,4,2,6], [4,2,3,4], [2,3,4,2], [2,4,2]

[1,2,4,5,2,4,5,2,6] [2,4,5,2], [1,2,4,5], [5,2,4,5], [4,5,2,4]

[1,2,4,5,4,2,3,4,2,6] [3,4,2,6], [4,2,3,4], [1,2,4,5], [2,3,4,2], [5,4,2,3], [4,5,4]

[1,2,4,5,4,2,6] [1,2,4,5], [5,4,2,6], [4,5,4]

[1,2,4,5,2,4,2,6] [2,4,5,2], [1,2,4,5], [4,5,2,4], [2,4,2]

[1,2,4,2,4,2,6] [4,2,4], [2,4,2]

[1,2,6] [1,2,6]

[1,2,4,5,4,5,2,6] [1,2,4,5], [5,4,5], [4,5,4]

Thus Automatic Generation leads to more test coverage paths thus resulting in efficient and effective testing

strategy. The above automatic Generation of Test Paths are based on prefix graph algorithms which cover both
edge pair as well as prime path coverage criteria and derive their concept using Chinese postman algorithm.

VI. CONCLUSIONS AND FUTURE WORK
Models are an excellent way to represent and understand system behavior, and they provide an easy way to

update tests to keep pace with applications that are constantly changing and evolving. Testing an application can
be viewed as traversing a path through the graph of the model. Graph theory techniques therefore allow us to
use the behavioural information stored in models to generate new and useful tests. Because graph theory
techniques deal directly with the model so new traversals can be automatically generated when the model
changes. Tests can be constantly changing on the same model. Different types of traversals can meet different
needs of testers. The traversal techniques are general and can be re-used on different models. Model-based
testing is a black-box technique that offers many advantages over traditional testing: Firstly, Constructing the
behavioural models can begin early in the development cycle. Secondly, Modelling exposes ambiguities in the
specification and design of the software. The model embodies behavioural information that can be re-used in
future testing, even when the specifications change. Moreover the model is easier to update than a suite of
individual tests. And, most importantly, a model furnishes information that can be coupled with graph theory
techniques to generate many different test scenarios automatically.

Testing benefits from the fact that the real system is brought to execution. Thus, the interaction of the real
hardware and the real software can be evaluated. It aims in falsification, i. e. to show inconsistencies between
the specification and developed system. Testing is applicable at different levels of abstraction and at different
stages of the development. With our approach UML state machines can be used in the quality assurance to serve
as a specification for the desired reactive behaviour of the system. It is possible to select relevant and interesting
inputs for a test case and to calculate the possible correct observations for given inputs. They allow to
automatically evaluating test executions which is in general a difficult and time consuming task. Applied
approximation makes the generation process practical.

Our technique achieves much important coverage like state coverage, transition coverage, transition pair
coverage, Prime path coverage. It can handle transitions with guards and achieves transition path coverage .Here
the number of test cases is minimized and they achieve transition path coverage by testing the
boundaries. Moreover, our planning is to include other diagrams of UML to generate test cases. In future, we
will look into how the test cases can be optimized and how other UML diagrams can be combined and used
to generate test cases and achieve higher coverage.

Parampreet Kaur et al, International Journal of Computer Science and Mobile Computing Vol.2 Issue. 7, July- 2013, pg. 302-311

© 2013, IJCSMC All Rights Reserved 311

REFERENCES

[1] Sanjai Rayadurgam and Mats P. E. Heimdahl, “Test-Sequence Generation from Formal Requirement
Models”, Proceedings of the 6th IEEE International Symposium on High Assurance Systems
Engineering (HASE’01), 2001.

[2] Jeff Offutt, Shaoying Liu, Aynur Abdurazik and Paul Ammann, “Generating Test Data from State-based
Specifications”, ISE Department, George Mason University, USA, 2003.

[3] Aynur Abdurazik and Jeff Offutt, “Generating Test Cases from UML Specifications”, 1999.
[4] Dirk Seifert, "Test Case Generation from UML State Machines", inria-00268864, version 2 - 23 Apr

2008.
[5] M. Prasanna, K.R.Chandran, “Automatic Test Case Generation for UML Object Diagrams Using

Genetic Algorithm”, Int. J. Advance. Soft comput. Appl., vol.1, no. 1, July 2009, pp. 19-32.
[6] Philip Samuel and Anju Teresa Joseph, “Test Sequence Generation from UML Sequence Diagrams”,

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2008.

[7] Supaporn Kansomkeat and Sanchai Rivepiboon, "Automated- Generating Test Case Using UML
Statechart Diagrams ",SAICSIT 2003.

[8] Ranjit Swain, Vikas Panthi, Prafulla Kumar Behera, Durga Prasad Mahapatra, “Automatic Test Case
Generation Based on State Machine Diagram”, International Journal of Computer Information Systems,
vol.4, no.2, 2012, pp. 99-124.

[9] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of model-based testing. Working
Papers 2006. Department of Computer Science, The University of Waikato (New Zealand), April 2006.

[10] Stephan Weissleder, Simulated Satisfaction of Coverage Criteria on UML State Machines, Third
International Conference on Software Testing, Verification and Validation, 2010.

[11] Mike Barnett, Wolfgang Grieskamp, Lev Nachmanson, Microsoft Research, One Microsoft Way,
Redmond, WA 98052, USA.

