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Abstract— In the modern world navigational behaviour of website visitor is an important role. In this 

paper implemented the web navigational pattern for college websites. Traditional method of web usage 

mining approach gives inefficient result for their web navigational pattern. So to overcome this, in this paper 

proposed an algortihm through-surfing pattern (TSP) from incremental database for college websites. The 

term TSP are well known to display the next visited Web pages in a browsing session. To record the 

information about navigation path of college website visitors by introducing path traversal graph and also 

applied the proposed efficient graph traverse algorithm depend on the proposed number of maximal 

references of path traversal pattern to discover the TSPS. The experimental results show the proposed mining 

method of TSP for college websites is provide high efficient and effective precision and recall based on 

minimum support compared to other approaches. 

 

Keywords— Web Navigation Pattern, through-surfing pattern, Path Traversal Graph, Maximal 
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I. INTRODUCTION 

Nowadays, the World Wide Web has becoming one of the most comprehensive information resources. It 

probably, if not always, covers the information need for any user. However, the Web demonstrates many radical 

differences to traditional information containers such as databases, in schema, volume, topic-coherence. Those 

differences make it challenging to fully use Web information in an effective and efficient manner. Web mining 

is right for this need [1].  

 

Generally web Mining Data is classified into three types and it is shown in Fig. 1. 

 Web content mining,  

 Web structure mining 

 and Web usage mining 

 

Web usage mining is the process of extracting useful information from server logs i.e. users history. Web 

usage mining is the process of finding out what users are looking for on Internet.  
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Some users might be looking at only textual data, whereas some others might be interested in multimedia data. 

This technology is basically concentrated upon the use of the web technologies which could help for betterment 

[3].Web content mining is the mining, extraction and integration of useful data, information and knowledge 

from Web page contents. Content mining is the scanning and mining of text, pictures and graphs of a Web page 

to determine the relevance of the content to the search query. This scanning is completed after the clustering of 

web pages through structure mining and provides the results based upon the level of relevance to the suggested 
query. With the massive amount of information that is available on the World Wide Web, content mining 

provides the results lists to search engines in order of highest relevance to the keywords in the query. [2]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Overview of Web Mining 

 

Mining Web navigation patterns is useful in practice, and the extracted patterns can be used to predict and 

understand visitors‟browsing behaviour and intentions. It is helpful in improving user experience, website 

configuration, and the efficiency and effectiveness of e-commerce. Website operators can apply Web navigation 

patterns to analyze and forecast user motivation, and thus provide better recommendations and personalized 

services for their customers [4,5]. 

 

The main task for the web structure mining is to handle the structure of the hyperlinks within the Web itself.  

One of the earliest research in this field is Link analysis. Nowadys, with the development of web mining, one of 

the part of web mining, structure mining research had increasing lot and these efforts had resulted in a newly 

emerging research area called Link Mining [6], which is located at the intersection of the work in link analysis, 

hypertext and web mining, relational learning and inductive logic programming, and graph mining. There is a 

potentially wide range of application areas for this new area of research, including Internet. 

 

II. RELATED WORK 

A Web navigation pattern referred to as a Web access pattern (also known as clickstream) is a path through 

one or more Web pages in a website that is extracted from the access logs of the Web server. A series of Web 

pages in a website requested by a visitor in a single visit is referred to as a session. The process of discovering 

patterns from access logs is known as Web usage mining or Web log mining [7]. 

Number of determination have to be developed  towards mining various pattern from web logs are present in 

[8,9,10]. 
Lot of enemorous research was go through for the navigation behaviour of website visitors. In this research 

many of the methods are carried through the web access patterns, for instance successfully and enlightinh their 

efficiency of web pages, web visitors target groups are identified, web search performance are increased and   

the access efficiency of Web pages by the adaptive website system, reorganizing a website dynamically and 

predicting user behaviour patterns in mobile Web systems [11,12]. This type of research task to develop web 
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access pattern and it is mainly foccussed on three main paradigms [13] they are  association rules, sequential 

patterns, and clustering [14, 15]. 

 

Both the association rule and sequaential rule was minied by graph based approach and it is implemented in 

[16] in this the author given that the database is huge means that the algorith is inadequate. In [17] author 

implemented an incremental mining algorithm, termed DSM-PLW, to find the maximal reference sequences in 

one database scan. 

 

To store the prevoius mining results are handled in [18] for incremental Web traversal patterns, here the 

author used the lattice structure for this type of storage. The patterns may be obtained rapidly when the database 

or the website structure is updated. Again, as stated in their conclusions, the size of the lattice structure may 

become too large to be loaded into the main memory. 

 

The former mining algorithms suffer from either repetitive database scan or high memory load. For 

algorithms with a single database scan, they build special data structures to store the sequences in the database. 

However, it is impracticable to hold all sequences of the database in the data structure. On the contrary, our 

scheme for mining TSPs is realistic, in which the memory is loaded with the hyperlink structure of the website 

instead of the sequence database. Nevertheless, the TSPs are not the same as maximal frequent sequences or 

closed sequential patterns. The graph traverse algorithm proposed in this study is not directly comparable to 

those of mining sequential patterns, closed sequences, and Web traversal patterns. As we pay attention to the 

tracks of website visitors, the proposed method provides an efficient and effective way to realize what targets 

the visitors may reach and how they are achieved. 

 

III. MINING TSP 

In this paper propose an well organized mining approach  to discover the throughout-surfing patterns. This 

throughout-surfing patterns are mined by the idea present in [12] that is maximal forward refernces. In this 

paper intially plan a compact structure  called the path traversal graph, it develop to  represent  the tracks of 

Web navigation. Then the proposed throughout-surfing patterns are developed by an effective graph traverse 

algorithm. The proposed method is more successful and effectual than conventional sequential pattern mining 

algorithms, because it have the advantage of that it scans the database only once instead of generating candidate 

patterns.  

 

The contributions of this paper are described as follows. 

 The concept of TSP is introduced, which are efficient and effective to provide a big picture of the 

navigation paths for understanding the purposes of website visitors. 

 A compact graph is devised to store the information of Web navigation paths. The information of Web 

browsing and hyperlinks between Web pages are kept in the graph. The edges in the path traversal 

graph record both incoming and outgoing hyperlinks and the via-links hold „„from-to-via‟‟ information 

in the graph that are necessary to predict where a visitor will go at any vertex by the vertex he comes 

from. 

 Then propose a graph traverse algorithm to find TSPs efficiently. A depth-first search (DFS) 

mechanism is adopted to traverse the path traversal graph. 

A.  Construction of path traversal graph 

When user activities on a website are recorded in Web server logs, the data collected in the log files are further 

processed to create Web browsing sessions for pattern mining tasks. It is common to generate Web browsing 

sessions for mining Web navigation patterns.  

 
TABLE I 

WEB BROWSING SESSIONS 

Session_ID Web browsing 

session 

So1  
So2  
So3  
So4  
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Fig. 2:  Initial path traversal graph 

In this study, a set of Web browsing sessions based on the maximal forward references [12]  is the primary 

input to the mining method. To avoid scanning databases repeatedly as well as generating a huge amounts of 

candidate sequences, in this paper we propose a graph traverse approach to discover TSP. First, we devise a graph 

structure to retain the user navigation information. The information of Web browsing sessions is collected in the 

proposed path traversal graph. Then, the graph traverse algorithm is performed on the graph to find TSP. 
 

TABLE II 

VERTEX FOR PATH TRAVERSAL GRAPH 

Vertex  Edge/ Via-link 

a <a,b>,<a,c>, <a,d> 

b <a,b,c>, <a,b,e> 

c <a,c,e>, <b,c,e> 

d <a,d,e> 

e <c,e,f>,<c,e,g>, <d,e,f> 

f <e,f,h>, <e,f,i>, <g,f,i> 

g <e,g,f> 

h <f,h,k> 

i <f,I,j>, <f,I,k> 

 

For efficiency of implementation, the information of edges and via-links are associated with the vertices 

while constructing the data structure of the path traversal graph. For example, an edge <b, d> associated with 

vertex b indicates a Web navigation path from vertex b–d, and a via-link associated with vertex b 

suggests that there is a path from vertex a–c via b. 

While the path traversal graph is constructed, each Web browsing session, such as   is 

decomposed to sets of edges  

 and via-links  and then the edges 

and via-links are recorded on the path traversal graph. For example, the Web browsing session  in 

Table 1 can be decomposed to five edges  plus four via-links 

. Based on the edge , vertex a and c are created and connected with 

the edge <a, c> in the path traversal graph. Then, vertex e and edge  are created and vertices a, c, and e are 

connected with via-link <a, c, e>. The following vertices are created and connected in the similar way. 

Fig. 1 depicts the path traversal graph corresponding to the four Web browsing sessions in Table 1 where the 

notations represents the edges and via-links respectively. For simplicity, the edges of the vertices except vertex a 

are omitted. Suppose the minimum support is 50%. After all the edges and via-links with supports below the 

minimum support are removed and those vertices unconnected by any edge or via-link are deleted, the 

remainder is the frequent path traversal graph. 

e 

a 

c d b 

f g 

i h 

j k 

               : edge                    : via-link 
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B. Graph traverse algorithm for mining throughout-surfing patterns 

Present and analyze the graph traverse algorithm for mining throughout-surfing patterns. The algorithm 

discovers all throughout-surfing patterns by selecting suitable starting edges and traversing frequent path 

traversal graph in DFS order 

In stage one, a vertex in the frequent path traversal graph is selected in step (g1) as the candidate for the 

starting vertex of a TSP. If the selected vertex has any edge that is not contained in any vialinks, that is, it is the 

starting vertex of some acyclic or partially cyclic TSPs, the mining process is proceeding to trace the edge and 

the follow-up via-links by calling the function trace() in step (g8). 

The function trace() adopts a DFS approach to traverse the frequent path traversal graph. It uses two stacks 

for non-recursive operations. The UntracedStack is used to store the unselected vertices when trace() traces 

some throughout-surfing patterns with the same prefix. The other stack, BacktrackStack, is used to store the 

index values of vertices in throughout-surfing patterns that indicate the number of vertices backtracked in the 

depth-first search. In step (t1), trace() pushes the second vertex of the starting edge on UntracedStack and then 

pop it for further processing in step (t5). 

After attaching the popped vertex w to eTSP in step (t6), the vialinks of w are checked if they are the follow-

up paths of eTSP in steps (t9) and (t10). If there are k via-links . where x is the preceding 

vertex of w in eTSP, yj are pushed on UntracedStack for further processing. In addition, if  the index 

value i of w in eTSP is pushed on BacktrackStack (k - 1) times in steps (t16)–(t19). It means that w is a 

diverging vertex in eTSP and there are (k - 1) throughout-surfing patterns with the same prefix of length i. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Graph Traverse algorithm 

 

 

Algorithm: Graph traverse 

Input: A frequent path traversal graph G 
Output: All throughout- surfing patterns 

//stage one: mining acyclic or partially cyclic throughout-surfing patterns 

(g1) while (v=G.getunselectedvertex ()) {// for each vertex v in G 

(g2) while (e=G.getEdge (v)) {//e=<v, u> 

(g3) if (G.unTraced (e) &&! G.lastComponentVL (e) {// e is untraced and not contained in any via-link of v 

(g4) G.markTraced (e); // mark e traced 

(g5) TSP.intialized (); 

(g6) TSP.push_back (e.front ()); // append v to TSP 

(g7) G.markselected (v); //mark v selected 

(g8) trace (e, TSP); //call trace () 

(g9)    } 

(g10)   } 
(g11)   } 

// Stage two: mining fully cyclic throughout-surfing patterns 

(g12) while (v=G.getvertex ()) {// for each vertex v in G 

(g13) G.markUnselected (v); //mark v unselected 

(g14)   } 

(g15) 

(g16) G.markTraced (l); // mark l untraced 

(g17)   } 

(g18) while (v=G.getunselectedvertex ()) {// for each vertex v in G 

(g19) while (l=G.getViaLink (v)) {//l=<p, v, q> 

(g20) if (G.unTraced (l)) {// l has not been traced in stage one 
(g21) TSP.intialized (); 

(g22) TSP.push_back (l.middle ()); // append v to TSP 

(g23) G.markselected (v); // mark v selected 

(g24)  e=l.getBackEdge (); //e=<v, q> 

(g25) trace (e, TSP); //call trace () 

(g26)    } 

(g27)} 

(g28)} 
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In step (t20), there are no added via-links by which eTSP can be extended, and therefore eTSP is ended at w. 

eTSP is outputted into the output buffer outPattern in step (t21). Then, in steps (t22) and (t23), an index value i 

in BacktrackStack is popped for backtracking eTSP if the BacktrackStack is not empty and the prefix of eTSP 

with length i is reused as a new TSP. Besides, the successive via-links and vertices of w along eTSP are marked 

untraced and unselected respectively in steps (t24)–(t28). The new eTSP can be extended by attaching a vertex 

popped from UntracedStack in the following iteration of trace(). 

When trace() returns, other TSPs starting at v are traced in the while loop of steps (g2)–(g10), and then 

unselected vertices are picked up for further processing in step (g1). After stage one, all acyclic or partially 

cyclic TSPs are found and the remainders are fully cyclic TSPs. A fully cyclic TSP can be traced from any via-

link in the TSP. Steps (g18)–(g28) in stage two find all fully cyclic TSPs as similar to those steps in stage one 

except the starting vertices are selected from any via-link which has not been traced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 trace () function 

 

 

 
 

Void trace (Edge strartE, vector<char>eTSP) //startE=<v, u> 

(t1) UntracedStack.push (startE. Back ()); //push u onto UntracedStack 

(t2) x=startE. Front (); //x=v 

(t3) while (! UntracedStack.empty ()) {//while UntracedStack is not empty 

(t4) countviaLink=0; 

(t5) w=UntracedStack.pop (); 

(t6) eTSP.Push_back (w); //append w to eTSP 

(t7) G.markselected (w); //mark w selected 

(t8) e=new Edge(x, w); //e=<x, w> 

(t9) while (l=G.getViaLink (w)) {//l=<x, w, y>, all untraced via-links with the same starting edge <x, w> 

(t10) if ((l.getFrontEdge () ==e) && (! eTSP. Exist (e))) {// the starting edge of l is <x, w> and <x, w> is 
not contained in eTSP 

(t11) countviaLink++; //the number of via-links with the starting edge e 

(t12) UntracedStack.push (l.back ()); //push y on UntracedStack 

(t13) G.markTraced (l); //mark l traced 

(t14)       } 

(t15)   } 

(t16)  if (countviaLink>=2) {// there are splitting nodes in eTSP 

(t17) for (i=0; i<countviaLink-1; i++ 

(t18)   BacktrackStack.push (eTSP. Index (w)); // push the index of w in eTSP on BacktrackStack 

(t19)   } 

 
 

 

 

 

 

 

 

 

(t20) else if (countviaLink==0) {//eTSP cannot extend anymore 

(t21)  out Pattern<<eTSP; //output eTSP 
(t22) if (! Backtrack Stack. Empty ()) {// there exists another TSP with the same prefix o to eTSP 

(t23) index=BacktrackStack.pop (); //the last splitting node 

(t24) for (iter=eTSP. Begin () +index; iter<eTSP. End ()-2; iter++) { 

(t25) G.unmarkSelected (*iter) 

(t26) G.unmarkTraced (ViaLink (*iter, (*iter+1),*(iter+2))); 

(t27)}//unmark the vertices and via-links I the suffix of eTSP 

(t28) G.unmarkSelected (*iter, 2); 

(t29) eTSP. Erase (index+1, eTSP.size ()-index-1); //retain the prefix 

(t30) w=eTSP. Back (); 

(t31)} 

(t32)} 

(t33) x=w; 

(34)} 
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C. Proposed Efficient graph traverse algorithm 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Proposed Graph traverse algorithm 

Proposed graph traverse algorithm consists of a of a list of frequent references, such as , 

where  and a set of Path traversal pattern tree of references , denoted 

by , . 

Each node in the ,  consists of four fields ifr_id, Nmfr, mfr_id and node-link. 

Where ifr_id is the identifier of the incoming forward reference, Nmfr registers the number of maximal forward 

references represented by a portion of the path reaching the node with the ifr_id, the value of cmfr_id assigned 

to a new node is the identifier of current maximal forward reference, and node-link links up a node with the next 

node with the same ifr_id in the proposed graph traverse algorithm. 

Each entry    in the proposed graph traverse algorithm list consists of four fields: fr_id, Nmfr, 

cmfr_id, and head-link, where fr_id registers which forward reference identifier the entry represents, Nmfr 

records the number of maximal forward references in the stream so far containing the reference with identifier 

fr_id, cmfr_id assigned to a new entry is the identifier of the current maximal forward reference, and head-link 

is a pointer, and points to the root node of the fr_id.Path-tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Proposed Efficient Graph traverse algorithm 
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Algorithm: proposed efficient graph traverse algorithm 

Input: A stream of maximal forward references,  and a user-

defined minimum support threshold  
Output: All throughout- surfing patterns. 

1.  fr-list = {}; /* initialize the fr-list to empty*/ 

2. for each  do /*  where N is the        
identifier of current MFR*/ 

3. for each reference   do / *  */ 

4. if  

5.                create a new entry of form  into the fr-list; 

6. else 

. ; 

     end if  

9. MFR-projected  

     for each reference   

                 Path tree maintenance ; 

      end 

10 end for 

11. end for 
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IV. EXPERIMENTAL RESULT 

In this paper implemented the mining method of Web navigational pattern for the college websites. 

Incremental database are used here to perfrom the experimental analysis for college websites. The algorithm 

developed in this paper were implemented in MATLAB. Then conducted the experiments on a PC running 

Microsoft Windows 2000 Professional with an Intel/ 1.5GHz Pentium IV processor, 512MB of main memory, 

and 80GB of hard disk. 

A. Performance analysis 

In this paper perform a experiment to compare proposed TSP method with the modified Apriori and 

Prefixspan algorithm, these exisitng algorithm was implemented by (Lee and Yen 2007). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 6 Execution time for different settings of minimum support thresholds 

 

Fig. 6 shows the result for different settings of minimum support thresholds. While the minimum support 

becomes lower, the number of frequent patterns increases and the frequent patterns get longer. From the above 

figure it is clearly observed that  the execution time for proposed mining method for college websites remains 

almost at the same level because it discovers the TSP by traversing the path traversal graph and almost all the 
run time is spent on constructing the path traversal graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Number of fan-out 
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That the number of fan-outs are varied from ten to fifteeen and it is shown in Fig. 7. The number of via-links 

associated with a vertex is proportional to the number of fan-outs. Therefore, the execution time grows with a 

larger number of fan-outs. From the above figure proposed method proves better result in exection time based 

on fan-out compared to other approaches. 

 

TABLE IIII 

PRECISION AND RECALL 

 

 

 

 

 

 

 

 

 

 

 

 

Table III gives the precision and recall for proposed web navigation pattern for college websites. From the 

table,find out that low degree of precision and recalls are obtained for low minimum support and high degree of 

precision and recall are obtained for high minimum support. 

V. CONCLUSION 

In this paper investigate the problem of mining web navigation pattern for college website. Proposed mining 

web navigation pattern gives best result compared to other approaches. Here introduced the mining web 

navigation pattern from incremental database. To prove the effectiveness and efficiency of web navigation 

pattern for college web sites by introducing throughout- surfing patterns. To improve the efficieny of mining 

throughout-surfing petterns by efficient graph traverse algorithm. In addition, a path traversal graph structure is 

suitable for incremental mining of sequential patterns. The compact graph structurere tained in the main 

memory may be output to permanent storage.While mining patterns from the database with new added data, the 

path traversal graph is restored in the main memory and the new data is retrieved and appended to the graph. 

From the experimnetal result it is clearly observed that proposed web navigational pattern gives best result 

compared to other approaches. 
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