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Abstract— Cloud-assisted mobile health (mHealth) monitoring, which applies the prevailing mobile communications and 

cloud computing technologies to provide feedback decision support, has been considered as a revolutionary approach to 

improving the quality of healthcare service while lowering the healthcare cost. Unfortunately, it also poses a serious risk on 

both clients’ privacy and intellectual property of monitoring service providers, which could deter the wide adoption of 

mHealth technology. This paper is to address this important problem and design a cloud assisted privacy preserving mobile 

health monitoring system to protect the privacy of the involved parties and their data. Moreover, the outsourcing decryption 

technique and a newly proposed key private proxy re-encryption are adapted to shift the computational complexity of the 

involved parties to the cloud without compromising clients’ privacy and service providers’ intellectual property. Finally, our 

security and performance analysis demonstrates the effectiveness of our proposed design. 
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I. INTRODUCTION 

    Wide deployment of mobile devices, such as smart phones equipped with low cost sensors, has already shown great potential 

in improving the quality of healthcare services. Remote mobile health monitoring has already been recognized as not only a 

potential, but also a successful example of mobile health (mHealth) applications especially for developing countries. The 

Microsoft launched project ―MediNet‖ is designed to realize remote monitoring on the health status of diabetes and 

cardiovascular diseases in remote areas in Caribbean countries [1]. In such a remote mHealth monitoring system, a client could 

deploy portable sensors in wireless body sensor networks to collect various physiological data, such as blood pressure (BP), 

breathing rate (BR), Electrocardiogram (ECG/EKG), peripheral oxygen saturation (SpO2) and blood glucose. Such 

physiological data could then be sent to a central server, which could then run various web medical applications on these data to 

return timely advice to the client. These applications may have various functionalities ranging from sleep pattern analyzers, 

exercises, physical activity assistants, to cardiac analysis systems, providing various medical consultation [2]. Moreover, as the 

emerging cloud computing technologies evolve, a viable solution can be sought by incorporating the software as a service 

(SaaS) model and pay-as-you-go business model in cloud computing, which would allow small companies (healthcare service 

providers) to excel in this healthcare market. It has been observed that the adoption of automated decision support algorithms in 

the cloud-assisted mHealth monitoring has been considered as a future trend [3].  

    Unfortunately, although cloud-assisted mHealth monitoring could offer a great opportunity to improve the quality of 

healthcare services and potentially reduce healthcare costs, there is a stumbling block in making this technology a reality. 
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Without properly addressing the data management in an mHealth system, clients’ privacy may be severely breached during the 

collection, storage, diagnosis, communications and computing. A recent study shows that 75% Americans consider the privacy 

of their health information important or very important [4]. It has also been reported [5] that patients’ willingness to get 

involved in health monitoring program could be severely lowered when people are concerned with the privacy breach in their 

voluntarily submitted health data. This privacy concern will be exacerbated due to the growing trend in privacy breaches on 

electronic health data. 

    Although the existing privacy laws such as HIPAA (Health Insurance Portability and Accountability Act) provide baseline 

protection for personal health record, they are generally considered not applicable or transferable to cloud computing 

environments [6]. Besides, the current law is more focused on protection against adversarial intrusions while there is little effort 

on protecting clients from business collecting private information. Meanwhile, many companies have significant commercial 

interests in collecting clients’ private health data [7] and sharing them with either insurance companies, research institutions or 

even the government agencies. It has also been indicated [8] that privacy law could not really exert any real protection on 

clients’ data privacy unless there is an effective mechanism to enforce restrictions on the activities of healthcare service 

providers. Traditional privacy protection mechanisms by simply removing clients’ personal identity information (such as names 

or SSN) or by using anonymization technique fails to serve as an effective way in dealing with privacy of mHealth systems due 

to the increasing amount and diversity of personal identifiable information [9]. It is worth noting that the collected information 

from an mHealth monitoring system could contain clients’ personal physical data such as their heights, weights, and blood 

types, or even their ultimate personal identifiable information such as their fingerprints and DNA profiles [10]. According to 

[11], personal identifiable information (PII) is ―any information, recorded or otherwise, relating to an identifiable individual. 

Almost any information, if linked to an identifiable individual, can become personal in nature, be it biographical, biological, 

genealogical, historical, transactional, locational, relational, computational, vocational, or reputational‖. In other words, the 

scope of PII might not necessarily be restricted to SSN, name and address, which are generally considered as PII in the 

traditional sense. Indeed, the state of the art re-identification techniques [12], [13] have shown that any attribute could become 

personal identifiable information in practice [9]. Moreover, it is also noted that although some attribute may be uniquely 

identifying on its own, ―any attribute can be identifying in combination with others, while no single element is a (quasi)-

identifier, any sufficiently large subset uniquely identifies the individual‖ [12]. The proposed mobile health monitoring scenario 

provides a good opportunity for adversaries to obtain a large set of medical information, which could potentially lead to 

identifying an individual user. Indeed, several recent works [14]–[16] have already shown that even seemingly benign medical 

information such as blood pressure can be used to identify individual users. Furthermore, it is also observed that future mobile 

health monitoring and decision support systems might have to deal with other much more privacy-sensitive features such as 

DNA profiles [17], from which an adversary may be able to re-identify an individual user [18], [19]. Traditionally, the privacy 

issue is tackled with anonymization technique such as k-anonymity or l-diversity. However, it has been indicated that these 

techniques might be insufficient to prevent re-identification attack [9]. The threat of re-identification is so serious that legal 

communities [20] have already been calling for more sophisticated protection mechanism instead of merely using 

anonymization. We believe that our proposed cryptographic based systems could serve as a viable solution to the privacy 

problems in mHealth systems, and also as an alternative choice for those privacy-aware users. 

    In this paper, we design a cloud-assisted mHealth monitoring system (CAM). We first identify the design problems on 

privacy preservation and then provide our solutions. To ease the understanding, we start with the basic scheme so that we can 

identify the possible privacy breaches. We then provide an improved scheme by addressing the identified privacy problems. The 

resulting improved scheme allows the mHealth service provider (the company) to be offline after the setup stage and enables it 

to deliver its data or programs to the cloud securely. To reduce clients’ decryption complexity, we incorporate the recently 

proposed outsourcing decryption technique [25] into the underlying multi-dimensional range queries system to shift clients’ 

computational complexity to the cloud without revealing any information on either clients’ query input or the decrypted 

decision to the cloud. To relieve the computational complexity on the company’s side, which is proportional to the number of 

clients, we propose a further improvement, leading to our final scheme. It is based on a new variant of key private proxy re-

encryption scheme, in which the company only needs to accomplish encryption once at the setup phase while shifting the rest 

computational tasks to the cloud without compromising privacy, further reducing the computational and communication burden 

on clients and the cloud. 

II. SYSTEM MODEL AND ADVERSARIAL MODEL 

    To facilitate our discussion, we first elaborate our cloud assisted mHealth monitoring system (CAM). CAM consists of four 

parties: the cloud server (simply the cloud), the company who provides the mHealth monitoring service (i.e., the healthcare 

service provider), the individual clients (simply clients), and a semi-trusted authority (TA). The company stores its encrypted 

monitoring data or program in the cloud server. Individual clients collect their medical data and store them in their mobile 

devices, which then transform the data into attribute vectors. The attribute vectors are delivered as inputs to the monitoring 

program in the cloud server through a mobile (or smart) device. A semi-trusted authority is responsible for distributing private 

keys to the individual clients and collecting the service fee from the clients according to a certain business model such as pay-



G. Jayashree et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.9, September- 2014, pg. 807-821 

© 2014, IJCSMC All Rights Reserved                                                                                                        809 

 

 

as-you-go business model. The TA can be considered as a collaborator or a management agent for a company (or several 

companies) and thus shares certain level of mutual interest with the company. However, the company and TA could collude to 

obtain private health data from client input vectors. We assume a neutral cloud server, which means it neither colludes with the 

company nor a client to attack the other side. This is a reasonable model since it would be in the best business interest of the 

cloud not to be biased. We admit that it remains possible for the cloud to collude with other malicious entities in our CAM, and 

we leave the CAM design under these stronger models as future work. We also do not assume that an individual client colludes 

with other clients. Our security model does not consider the possible side-channel attack [26], [27] due to the co-residency on 

shared resources either because it could be mitigated with either system level protection [27] or leakage resilient cryptography 

[28]. CAM assumes an honest but curious model, which implies all parties should follow the prescribed actions and cannot be 

arbitrarily malicious. 

 
    In the following, we briefly introduce the four major steps of CAM: Setup, Store, TokenGen and Query. We only illustrate 

the functionality of these components in this section while leaving the details in later sections. At the system initialization, TA 

runs the Setup phase and publishes the system parameters. Then the company first expresses the flow chart of the mHealth 

monitoring program as a branching program (see Sec. III-B for detail), which is encrypted under the respective directed 

branching tree. Then the company delivers the resulting ciphertext and its company index to the cloud, which corresponds to the 

Store algorithm in the context. 

    When a client wishes to query the cloud for a certain mHealth monitoring program, the i-th client and TA run the TokenGen 

algorithm. The client sends the company index to TA, and then inputs its private query (which is the attribute vector 

representing the collected health data) and TA inputs the master secret to the algorithm. The client obtains the token 

corresponding to its query input while TA gets no useful information on the individual query. 

    During the last phase, the client delivers the token for its query to the cloud, which runs the Query phase. The cloud 

completes the major computationally intensive task for the client’s decryption and returns the partially decrypted ciphertext to 

the client. The client then completes the remaining decryption task after receiving the partially decrypted ciphertext and obtains 

its decryption result, which corresponds to the decision from the monitoring program on the clients’ input. The cloud obtains no 

useful information on either the client’s private query input or decryption result after running the Query phase. Here, we 

distinguish the query input privacy breach in terms of what can be inferred from the computational or communication 

information. CAM can prevent the cloud from deducing useful information from the client’s query input or output 

corresponding to the received information from the client. However, the cloud might still be able to deduce side information on 

the client’s private query input by observing the client’s access pattern. This issue could be resolved by oblivious RAM 

technique [29], but this is out of the scope of this paper. 

III. SOME PRELIMINARIES AND SECURITY BUILDING BLOCKS 

A. Bilinear Maps 

     Pairing is crucial to our design, which would further serve as the building blocks of our proposed CAM. A pairing is an 

efficiently computable, non-degenerate function, e : G×G →GT , with the bilinearity property: e(gr, gs) = e(g, g)rs for any r, s 

∈ Z∗q , the finite field modulo q, where G, and GT are all multiplicative groups of prime order q, generated by g and e(g, g), 

respectively. It has been demonstrated that the proposed IBE is secure under the decisional bilinear Diffie- Hellman (DBDH) 
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assumption (which states that in the IBE setting, given (g, ga, gb, gc, S), it is computationally difficult to decide whether 

). Details can be found in [30]. 

B. Branching program 

     In this section, we formally describe the branching programs [31], which include binary classification or decision trees as a 

special case. We only consider the binary branching program (as shown in Fig. 1) for the ease of exposition since a private 

query protocol based on a general decision tree can be easily derived from our scheme. Let v=(v1, · · · , vn) be the vector of 

clients’ attributes. To be more specific, an attribute component vi is a concatenation of an attribute index and the respective 

attribute value. For instance, A||KW1 might correspond to ―blood pressure: 130‖. Those with a blood pressure lower than 130 

are considered as normal, and those above this threshold are considered as high blood pressure. Each attribute value is an C-bit 

integer. In this paper, we choose C to be 32, which should provide enough precision in most practical scenarios. A binary 

branching program is a triple ⟨{p1, · · · , pk}, L,R⟩. The first element is a set of nodes in the branching tree. The non-leaf node pi 

is an intermediate decision node while leaf node pi is a label node. Each decision node is a pair (ai, ti), where ai is the attribute 

index and ti is the threshold value with which vai is compared at this node. The same value of ai may occur in many nodes, i.e., 

the same attribute may be evaluated more than once. For each decision node i, L(i) is the index of the next node if vai≤ ti; R(i) is 

the index of the next node if vai > ti. The label nodes are attached with classification information. To evaluate the branching 

program on some attribute vector v, we start with p1. If va1≤t1, set h = L(1), else h = R(1). Repeat the process recursively for 

ph, and so on, until one of the leaf nodes is reached with decision information. 

 
    To illustrate how a practical monitoring program can be transformed into a branching program, we use the monitoring 

program introduced in the MediNet project [32], [33] to construct a branching program as shown in Fig. 2. The MediNet aims to 

provide automatic personalized monitoring service for patients with diabetes or cardiovascular diseases. Clients input their 

related health data such as systolic blood pressure (BP), whether they missed daily medications or had an abnormal diet, and the 

energy consumption of physical activity to the decision support system, which will then return a recommendation on how the 

clients can improve their conditions. For instance, assume a hypertension patient inputs an attribute vector consisting of the 

following elements ―[Systolic BP: 150, Missed one medication=0 (indicating hedid miss the medication), Energy Expenditure: 

900 kcal, salt intake: 1000 milligrams]‖ and the respective threshold is ―t1 = 130, t2 = 0, t3 = 700kcal, t4 = 1500‖. The 

recommendation returned from the monitoring program (Fig. 2) would be ―D4,D5,D6‖ (by following the path through 

comparing each attribute element with the respective threshold at each node), which indicates the clients need to ―notify next 

kin, modify daily diet, and take regular medication‖. The health data related to the input attribute vector can be sampled either 

by a portable sensor or input by the client. 
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C. Homomorphic encryption 

      Homomorphic encryption is widely used as an underlying tool for constructing secure protocols in the literature [34], [35]. 

CAM adopts a semantically secure additively holomorphic public-key encryption technique. Intuitively, for  monomorphic 

encryption HEnc(·), given two encrypted messages HEnc(m1) and HEnc(m2), the encryption of the addition of the two 

underlying messages can be computed additively as follows: HEnc(m1+m2) = HEnc(m1)⋆HEnc(m2), where ⋆ is the 

corresponding operation in the cipher text space. A typical additively homomorphic encryption scheme was proposed by Parlier 

cryptosystem [36], [37]. Homomorphic encryption enables a client to obtain the token corresponding to the input attribute 

vectors obliviously from TA. 

D. Multi-dimensional range queries based anonymous IBE 

    Since Multi-dimensional range queries (MDRQs) are used in our proposed scheme, we briefly describe MDRQs here. 

MDRQs were first proposed by Shi et al [38], which has been further adapted [39] to construct a reputation-based encryption 

scheme. In MDRQs system, a sender encrypts a message under a range [r1, r2] (or a C-bit data v), and a receiver with the 

privacy key corresponding to the range [r1, r2] (or a C-bit data v) can decrypt the underlying message. The generated cipher text 

can guarantee the privacy of both the underlying message and the respective range or data under which the message is 

encrypted. 

    The basic idea of MDRQs is as follows: a C-level binary tree is employed to represent the C-bit data (or the range). The root 

of this binary tree is labelled as ⊥. The left child node of a non-leaf node s is labelled as s0 and the right child node is labelled as 

s1. As a result, all the leaves from left to right will be labelled with a binary string from 0, 0, · · · , 0 to 1, 1, · · · , 1, 

corresponding to all the possible C-bit data. To represent a range [r1, r2] ⊆ [0, 2C−1], a minimum set of roots of sub trees 

covering all the leaf nodes in this range is used. Take a system with 3-bit data for instance (Fig. 3), the minimum root set to 

represent a range [001, 100] is S[001;100] = {001, 01, 100}.  

    Apparently, the minimum root representation set is unique for a specific range and contains only at most C elements [38]. To 

represent a C-bit data v, we first find the respective leaf node, then use the collection of all nodes on the path from the root to 

this leaf node. As shown in Fig. 3, the collection S010 = {⊥, 0, 01, 010} represents 010. In order to test whether 010 belongs to 

the interval [001, 100], one only needs to check whether there is an intersection node between the two representation sets. 

MDRQs can be constructed from an anonymous identity based encryption (A-IBE) scheme [40]. Compared with the traditional 

IBE scheme where a cipher text can only hide the privacy of the underlying message, the anonymous IBE scheme can hide both 

the privacy of both the receiver identity and the underlying message. To encrypt a message m under a range [r1, r2] (or a vector 

v), a sender treats each element in Sr1;r2 (or Sv) as an identity in the identity space in the A-IBE scheme and encrypts m under 

all those identities one by one. The receiver with a C-bit data v (or a range [r1, r2]) obtains private keys corresponding to all the 

identities in Sv (or S[r1;r2]) securely from TA. Thus, only when a receiver’s id falls into the range can he decrypt the message 

since this is the only case when there is an intersection identity id between S[r1;r2] and Sv. 

    MDRQs play a vital role in our CAM design because all the comparisons between the client input vector and the respective 

thresholds at intermediate decision nodes are implemented using MDRQs. At each decision node ai, the respective threshold ti 

is represented as two minimum root sets: [0, ti] and (ti,Max]. For instance, the systolic BP threshold t1 =130 in the example in 

Sec. III-B can be represented by the two root sets in a binary tree of 8 levels using the representation approach introduced 

earlier. The index of the next decision node (or the decision results of the label node) is encrypted under the respective range. 

Meanwhile, the respective client input, i.e., BP=150, is represented as a path node set. Then, the decryption result of MDRQs 

determines the index of the next node. 

E. Decryption outsourcing 

     The pairing-based IBE system [30] and its extensions such as attribute-based encryption [41], [42] has a reputation of costly 

decryption workload due to the bilinear paring operations in the decryption steps. Moreover, the pairing computation is 

considered to be especially computationally intensive for resource-constrained mobile phones. For example, for a chosen 

pairing function, the computation time on a PC with 2.40GHz Intel(R) Core 2 Quad, 3 GB RAM, and Windows 7 is 14.65ms 

while that on an Android 2.3.2 with 1GHz ARM Cortex A8 and 512 MB RAM is as high as 332.9 ms. Thus, we seek decryption 
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outsourcing to ease the computational complexity. The decryption outsourcing in ABE was first proposed by Green et al [25]. It 

enables a client to transform his secret key to the transformation key and then delegates it to an untrusted server (e.g., a cloud) 

to use it to transform the original cipher text into an El Gamal encryption of the original message. The client only needs to 

compute simple exponentiation operations to obtain the underlying message. In CAM, we intend to apply the outsourcing 

decryption technique to MDRQs based on the BF-IBE scheme. The BF-IBE based outsourcing decryption is shown as follows.     

AnonSetup(1_): This algorithm is exactly the same as the original BF-IBE.AnonMaskExtract(id, msk): This algorithm is 

performed by TA and a client. The client chooses a random number z ∈ Zq, then computes H1(id)z, and deliver H1(id)z to TA, 

who will output a transformation key corresponding to id: tkid =H1(id)zs. The client keeps z as its private key skid. 

AnonEnc(id, PP,m): This algorithm is exactly the same as the original BF-IBE and output Cid = (c1, c2, c3). Transform(Cid, 

tkid): This algorithm is performed by the cloud. The cloud parses Cid = (c1, c2, c3) and then computes w = e(tkid, c1). Then it 

outputs the transformed cipher text C′id = (c′ 1, c′ 2, c′ 3) = (w, c2, c3). AnonMaskDecryption(C′ id, z): This algorithm is 

performed by the client. Upon receiving the input of a cipher text C′ id under id together with his secret z, the client parses C′  id 

= (c′ 1, c′ 2, c′ 3) and compute u = c′ 1 1=z, then recovers σ = c′ 2 ⊕ H2(u). Then the message m can be obtained by m = c′ 3 ⊕ 

H4(σ). It can be easily verified that the above scheme is indeed correct. We observe that in this construction the  lient only needs 

to compute one exponentiation in order to obtain the message, and the costly pairing operation is completed by the cloud. It can 

be shown as done in [25] that our proposed BFIBE with outsourcing decryption is secure against replayable Chosen cipher text 

attack (CCA), which implies that the following mask privacy: TA obtains no useful information on the client’s identity id since 

H1(id)z is just a random element to TA under random oracle model. Neither does the cloud obtain any useful information on the 

client’s decryption result or the client identity id since the transformation key tkid = H1(id)zs reveals nothing on id either. 

F. Key private proxy re-encryption (PRE) 

     Another technique we will use is the proxy re-encryption (PRE), which was first proposed by Blaze et al. [43], and further 

formalized by Ateniese et al. [44]. Proxy re-encryption allows an untrusted proxy server with a re-encryption key (rekey) 

rkA→B to transform a cipher text (also known as first level cipher text) encrypted for Alice (delegator) into one (second level 

cipher text) that could be decrypted by Bob (delegatee) without letting the proxy obtain any useful information on the 

underlying message. Proxy re-encryption can be categorized according to various properties: unidirectional or bidirectional, 

non-interactive or interactive, collusion resistant or not, key private or not, and transferable or non-transferable. In our scheme, 

we emphasize two most relevant properties: unidirectionality and key privateness. Unidirectionality means that delegation from 

A → B does not allow delegation in the opposite direction. Key privateness implies that given the rekey rkA→B, the proxy 

deduces no information on either the identity of the delegator or the delegate. In CAM, the monitoring program delivered by the 

company is encrypted using an MDRQs scheme and the cipher text is stored in the untrusted cloud. The company then delivers 

several encryption keys to the cloud. The key private property can guarantee that no useful information about the underlying 

identities, corresponding to the thresholds of the intermediate nodes, is leaked to the cloud. By adapting proxy re-encryption, we 

intend to reduce the encryption workload for the company. 

    Although proxy re-encryption has been recognized as an important tool for access control on the cloud, we believe another 

property re-key generation efficiency should be added to the proxy re-encryption scheme in order to render it as a more efficient 

tool for outsourcing encryption to the cloud. Rekey generation efficiency basically means that the computation of the re-key 

generation should be much less than that of the first level encryption in PRE, which is extremely useful when the proxy re-

encryption scheme serves to outsource massive public key encryption operations. In our scheme, we devise a new ID-based key 

private proxy re-encryption scheme with lower cost of re-key generation comparing with the original encryption algorithm. 

Different from the traditional identity-based PRE system [45], our rekey generation algorithm is run by TA rather than the 

company. The company is required to obtain the secret keys for the identity A from TA in the traditional ID-based PRE scheme, 

which means A is known to TA. We further let TA know the identities of both A and B. As a result the improved rekey 

generation is much more efficient than the traditional rekey generation. 

IV.   CAM DESIGN 

     We are ready to present our design CAM: cloud-assisted privacy preserving mHealth monitoring system. To illustrate the 

fundamental idea behind this design, we start with the basic scheme, and then demonstrate how improvements can be made 

step-by-step to meet our design goal. Some of the variables in the following illustration may have already been defined in the 

previous sections. The system time is divided into multiple time periods, called slots, each of which can last a week or a month 

depending on specific application scenarios. There is an estimated maximum number of users N requesting access to the 

monitoring program in any given slot. When a client attempts to access the program, it is assigned an index i ∈ [1,N] by TA 

A. Basic CAM 

    The following basic scheme runs the BF-IBE system as a sub-routine and is the fundamental building block in our overall 

design. 

    Setup: This algorithm is performed by TA, which publishes the system parameters for the BF-IBE scheme. Store: This 

algorithm is performed by the company. For each node pj whose child nodes are not leaf nodes, the company runs CL(j) = 

AnonEnc(id, PP,L(j)) and CR(j) = AnonEnc(id, PP,R(j)) to encrypt the child node indices under id with either id ∈ S[0;tj ] or id 
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∈ S[tj+1;Max], respectively. When the child nodes of pj are leaf nodes, the company generates the ciphertext as CL(j) = 

AnonEnc(id, PP,mL(j)) and CR(j) = AnonEnc(id, PP,mR(j)), where mL(j) and mR(j) denote the attached information at the two 

leaf nodes, respectively. All the generated cipher texts are delivered and stored in the cloud. 

    TokenGen: To generate the private key for the attribute vector v=(v1, · · · , vn), a client first computes the identity 

representation set of each element in v and delivers all the n identity representation sets to TA. Then TA runs the 

AnonExtract(id, msk) on each identity id ∈ Svi in the identity set and delivers all the respective private keys skvi to the client. 

Query: A client delivers the private key sets obtained from the TokenGen algorithm to the cloud, which runs the     

AnonDecryption algorithm on the cipher text generated in the Store algorithm. Starting from p1, the decryption result 

determines which ciphertext should be decrypted next. For instance, if v1 ∈ [0, t1], then the decryption result indicates the next 

node index L(i). The cloud will then use skv(L(i)) to decrypt the subsequent ciphertext CL(i). Continue this process iteratively 

until it reaches a leaf node and decrypt the respective attached information. 

 

B. CAM with Full Privacy Preservation 

    The basic scheme has the following security weakness: first, the identity representation set for a client’s attribute vector v is 

known to TA, and hence TA can easily infer all the client’s private attribute vector. Second, the client cannot protect his privacy 

from the cloud either because the cloud can easily find out the identity representation for the private key skvi , i ∈ [1, n] by 

running identity test in MDRQs. The cloud can simply encrypt a random message under any attribute value v′ until when it can 

use skvi to successfully decrypt the ciphertext, which means there is a match between v′ = vi and hence it successfully finds out 

vi. Third, neither can the data privacy of the company be guaranteed since the identity representation of the respective range is 

revealed to the cloud whenever the decryption is successful due to the match revealing property (see Sec. III-D) of MDRQs.  

     The cloud can finally figure out most of the company’s branching program since it has the private keys of all the system 

users. To rectify the weakness of the basic scheme, we provide the following improvement. The high level idea (as shown in 

Fig. 4) is as follows: in order to avoid leaking the attribute vector to TA, the client obliviously submits his attribute vectors to 

TA so that he can obtain the respective private keys without letting TA get any useful information on his private vector. The 

client runs the outsourcing decryption of MDRQs to ensure the cloud completes the major workload while obtaining no useful 

information on his private keys. On the other hand, the company will permute and randomize its data using homomorphic 

encryption and MDRQs so that neither the cloud nor a client can get any useful information on its private information on 

branching program after a single query. Meanwhile, the company is also required to include the randomness in the 

randomization step in the encryption sent to TA to guarantee that TA can successfully generate tokens for clients. The 

improvement consists of four steps just as in the basic scheme.We will show how this improvement meets the desired security 

requirements. Setup: This algorithm is performed by TA, which publishes the public parameter PP for the anonymous IBE. 

Store: This algorithm is performed by the company. Let PRF(s, i) be a pseudo-random function (see [46] for detail) which takes 

as input a secret key s and an i, i.e., PRF : {0, 1}_ × [1,N ∗ k] → {0, 1}C+C ′ , where N is the maximum number of the clients 

accessing the company branching program in a time slot. For i = 1 to N, the company first computes δij = PRF(s, (i − 1) ∗ k + j), 

where j ∈ [1, k]. For j ∈ [1, k], the company obtains all the identity representation set S[0;tj+_ij ] and S[tj+_ij+1;Max′], where 

Max′ denotes the maximum number, i.e., (1,..., 1)C+C′ . For i = 1 to N, let Qi be a random permutation of (1, 2, · · · , k) with 

Qi[1] = 1. For each node pj whose children are not leaf nodes, the company selects two symmetric keys kQi[L(j)], kQi[R(j)]. 

Then, it runs the encryption algorithm AnonEnc(id1, PP, kQi[L(j)] ||Qi[L(j)]) and AnonEnc(id2, PP, kQi[R(j)] ||Qi[R(j)]), 

where id1 ∈ S[0;tj+_ij ] and id2 ∈ S[tj+_ij+1;Max′], which will result in two ciphertext sets CQi[L(j)] and CQi[R(j)], 

respectively. Let TCj={CQi[L(j)],CQi[R(j)] }. Then, kQi[L(j)] and kQi[R(j)] are used to encrypt the ciphertexts TCQi[L(j)] and 

TCQi[R(j)], respectively, using a semantically secure symmetric key encryption scheme 1. This guarantees that the client could 

have the opportunity to further query one of the child nodes only when its attribute value falls into the respective range. 

    When pj is the parent node of leaf nodes, then the two symmetric keys are used to encrypt the information attached to the two 

leaf nodes, respectively. The company delivers all the cipher texts, including the public key and symmetric key cipher texts 

according to the permuted order, to the cloud while delivering both the pseudorandom function PRF(s, i), the random 

permutation function Qi and the concerned attributes of the program, i.e., {a1, · · · , ak}, to TA.  

    TokenGen: To generate the private keys for the attribute vector v=(v1, · · · , vn), the i-th client first generates a public/ private 

key pair for a homomorphic encryption scheme, HEnc(·), and sends the public key and HEnc(vj) to TA. For j ∈ [1, k], TA 

computes HEnc(vaj+δij) from HEnc(δij) and HEnc(vaj ). Then it applies the permutation function Qi to the index set {a1, · · · , 

ak}, and return the ciphertext HEnc(vaj + δij) according to the permuted order. The client decrypts the returned ciphertext 

HEnc(vaj + δij) and obtains vaj +δij for j ∈ [1, k]. We note that δij statistically hides the respective vector elements vaj when C′ 

is sufficiently large [31], [47], which would further hide the concerned attribute set of the branching program from the client. 

The client first decides the identity representation set Svaj+_ij . For each identity id ∈ Svaj+_ij , the client runs 

AnonMaskExtract(id, msk) with TA to generate the transformation key tkid. Multiple instances of AnonMaskExtract(id, msk) 

can be run simultaneously in here to guarantee a constant communication round. The generated transformation keys for Svaj+_ij 

can be delivered directly to the cloud according to the permuted order. Neither TA nor the cloud can obtain any useful 

information on the underlying identity representation due to the mask privacy of the AnonMaskExtract algorithm in Sec. III-D. 
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   We observe that, comparing with the basic scheme, the cloud obtains no useful information on the company’s branching 

program. Due to the usage of permutation function, or the respective randomized thresholds from the pseudo-random function, 

and the security of the MDRQs system, the cloud obtains no useful information on the order of those intermediate nodes either. 

The cloud cannot find out the query vector v by performing identity test either because the transformation keys the cloud 

obtains during the query process cannot be used for identity testing. Indeed, those transformation keys leak no private 

information on the query vector v due to the mask privacy discussed in Sec. III-D. The company can protect the data privacy 

from individual clients, especially the thresholds and orders of those branching nodes irrelevant to the client’s final decision 

result, because the client does not even have a chance to perform the respective queries due to the semantic security of MDRQs 

and symmetric key encryption scheme. However, the client might be able to figure out the attribute thresholds of the 

intermediate nodes and their respective orders if those nodes lead to the final decision result due to the match revealing property 

of MDRQs, but this is all the possible side information the client can get. An interesting bonus of this improvement is that TA 

does not obtain much information on the company’s branching program either. As a matter of fact, the only private information 

TA can infer from the information delivered by the company is the indices of the concerned nodes in the branching program. 

C. Final CAM with Full Privacy and High Efficiency 

     Although the above improved scheme does meet the desired security requirements, the company may need to compute all the 

ciphertexts for each of N clients, which implies huge computational overheads and may not be economically feasible for small 

mHealth companies. In this section, we provide a further improvement to reduce both the computational burden on the company 

and the communication overhead for the cloud. The high level idea (as shown in Fig. 5) is as follows. We employ a newly 

developed key private re-encryption scheme (introduced in Sec. IV-C1) as an underlying tool. Instead of computing a ciphertext 

for each client, the company generates one single ciphertext, which will then be delivered to the cloud. The company will then 

obliviously deliver the identity threshold representation sets for the thresholds of the decisional branching nodes and the indexes 

of the concerned attributes to TA so that TA can generate the ReKeys corresponding to the rest clients in the system using the 

key private re-encryption scheme. The generated rekeys are then delivered to the cloud, which can then run the re-encryption 

scheme using the rekeys and the single ciphertext delivered by the company to generate  the ciphertexts for the rest clients. The 

proposed re-encryption scheme incorporates the outsourcing decryption so that the other security and efficiency characteristics 

in the final CAM are inherited here. Besides, the decryption algorithm of the proxy re-encryption scheme induces much less 

interactions between clients and the cloud comparing with that in our improved scheme. Since the final scheme is based on the 

newly proposed key private proxy re-encryption scheme, we will present this scheme first.  

1) Key private proxy re-encryption scheme: 

    The proxy reencryption scheme consists of the following six algorithms. Setup(1_): This algorithm is performed by TA. 

Upon receiving the input of the security parameter 1_, TA outputs the system parameter (G,GT , q, g,Hi, i = 1, 2, 3, 4, 5), the 

key pair for TA (pk, msk) = (y, s) = (gs, s), where G,GT are bilinear groups of prime order q, g is a random primitive root in G, 

Hi, (i ∈ {1, 2, 3, 4, 5}) are cryptographic hash functions. H1 : {0, 1}∗ → G, H2 : G × G → Z∗ q , H3 : M×M → Z∗ q , H4 : GT 
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→M×M, and H5 : G×M×M→ G. The system parameter is included in the following algorithms implicitly. Ext(id, msk): This 

algorithm is performed by TA and a client. Upon receiving the input of an identity id, the client first picks a random number z ∈ 

Z∗ q , computes u1 =H1(id)z and sends to TA. TA outputs the transformation key corresponding to id: u2 = us 1 where s = msk 

and sends it back to the client. Then the client computes his private key skid=u1=z 2 =H1(id)zsz −1 =H1(id)s. We note that TA 

obtains no information on the client identity because H1(id)z is just a random group element under random oracle model. The 

transformation key can be publicly distributed due to the same reason [25]. 

    ReKey(id1, id2, msk): This algorithm is performed by TA. Upon receiving the request from delegator D of re-encryption 

from id1 to id2, it first runs the Ext algorithm on id2 to generate skid2 . Then it outputs the re-encryption key from id1 to id2: 

rkid1;id2 = (rk(1) id1;id2 , rk(2) id1;id2 ) = (H1(id1)s · gH2(skid2 ||Nid1;id2 ),Nid1;id2 ) where Nid1;id2 is a random element 

from G. Enc(id,m): This algorithm is performed by the company. Upon receiving the input m ∈M, an identity id, it outputs the 

ciphertext C = (c1, c2, c3), where r = H3(m||σ), c1 = gr, c2 = (σ||m) ⊕ H4(e(H1(id), y)r), c3 = H5(c1||c2)r where σ is a random 

element from M, the message space. ReEnc(Cid1 , rkid1;id2 ): This algorithm is performed by the proxy. Upon receiving the 

input of an original ciphertext Cid1 = (c1, c2, c3) under identity id1, and a re-encryption key rkid1;id2 from id1 to id2, if 

e(c1,H5(c1||c2)) = e(g, c3) holds, then it outputs the re-encrypted ciphertext Cid2 = (c′ 1, c2, c′ 3, c4) with c′ 1 = e(g, c1), c′ 3 = 

e(c1, rk(1) id1;id2 ), and c4 = rkid1;id2 . Otherwise, it outputs ⊥. Dec(skid,Cid): This algorithm is performed by a client. Upon 

receiving the input of a ciphertext Cid under id, and a private key skid, the algorithm is shown as follows.  

 

 
 

 

2) Final CAM with Full Privacy and High Efficiency: 

     With the above newly-proposed key private proxy re-encryption, we are now ready to design our highly efficient CAM with 

full privacy. Setup: This algorithm is performed by TA, which runs the Setup algorithm of the proxy re-encryption scheme and 

publish the respective system parameters. Store: This algorithm is performed by the company. Let PRF(s0, i) and PRF(s1, i) be 

two pseudo-random functions which take as inputs a secret key sj , j ∈ {0, 1} and an i, i.e., PRF : {0, 1}_ × [1,N ∗ k] → {0, 

1}C+C ′ , where N denotes the maximum number of the clients accessing the company’s data in a time slot. The company first 

computes δ(0) ij = PRF(s0, (i−1)∗k+j), δ(1) ij = PRF(s1, (i − 1) ∗ k + j) and δij = δ(1) ij + δ(0) ij , where j ∈ [1, k]. For j ∈ [1, k], 

the company obtains all the identity representation set S[0;tj+_ij ] and S[tj+_ij+1;Max′]. Let Q be a random permutation of the 

set [1, k] = (1, 2, · · · , k) with Q[1] = 1. The company delivers PRF(s0, ·), {tj + δij , aj |i ∈ [1,N], j ∈ [1, k]} and Q to TA, which 

computes the identity representation set as the company does. For j ∈ [1, k], TA runs the ReKey(id1, id2, msk) algorithm on id1 

∈ S[0;tj+_ij ] and id2 ∈ S[0;tj+_(i+1)j ], or id1 ∈ S[tj+_ij+1;Max′] and id2 ∈ S[tj+_(i+1)j+1;Max′]. Although the respective two 

representation sets might not have the identical number of elements, the rekey generation process can simply start from the first 

identity element of both sets until the set containing fewer identities exhausts all its identity elements. TA then returns all the 

generated rekeys according to the permuted order Q[j] to the cloud. 
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     Query: The client delivers his index i to the cloud which will then return the respective ciphertext. The client can either 

download all the ciphertexts and transformation key and perform the rest decryption steps, or he could start to run 

Dec(skid,Cid), where id ∈ S[0;t1+_i1] or S[t1+_i1+1;Max′] to decrypt from p1 and then download the ciphertext and the 

transformation key for the next node according to the decryption result. If he chooses the latter approach, then he only needs to 

access the ciphertext corresponding to a path from the root node to a leaf node instead of all the ciphertexts for all nodes in the 

directed branching tree. However, in so doing, the client has to access the cloud multiple times proportional to the length of the 

path. Compared with the first improvement, the cloud does not need to perform any computation when it interacts with the 

client in this case because the client alone can complete all the necessary decryption steps. On the other hand, the client does not 

need to compute any bilinear map since the bilinear operation has already been completed by the cloud due to the preprocessing 

step in the ReEnc(Cid1 , rkid1;id2 ) algorithm as shown in subsection IV-C1. 

V. SECURITY ANALYSIS AND PERFORMANCE EVALUATION 

  A. Security 

     In our CAM, we observe that the cloud obtains no information on either the individual query vector v or the company 

diagnostic branching program as in our first improvement. The cloud obtains no information on the company’s branching 

program due to the semantic security of the proxy reencryption and symmetric key encryption scheme. The secrecy of the 

ciphertexts in the encryption schemes guarantee that the cloud can neither find out the information attached to the leaf nodes nor 

the order or the thresholds of intermediate branching nodes. The key privacy guarantees that the cloud obtains no useful 

information on the branching program while completing all the computationally intensive encryption operations for the 

company. As in the first improvement, the transformation key contains no information on a client’s query vector v due to he 

mask privacy, which defeats the cloud’s attack through the identity testing. 

 



G. Jayashree et al, International Journal of Computer Science and Mobile Computing, Vol.3 Issue.9, September- 2014, pg. 807-821 

© 2014, IJCSMC All Rights Reserved                                                                                                        817 

 

 

 

    Moreover, a client can only gain information on his decision result and certain side information on the relevant nodes leading 

to his decision result as in the first improvement, which we consider to be reasonable since we commonly know that a doctor 

usually informs his patients their medical information in practice. On the other hand, the trusted authority and the company have 

the motivation to collude to obtain information on the client query vector v. However, this attack cannot succeed because TA 

obtains no information during the private key generation process as stated in the Ext algorithm of Sec. IV-C1 and all the 

individual decryption is done on clients’ devices. We note that TA in our final CAM can only infer from the indices of relevant 

nodes of the branching program delivered by the company just as in the first improvement. We have also carried out formal 

analysis in the appendix to show that our proposed key private re-encryption scheme is secure and privacy-preserving under 

random oracle model and under decisional bilinear Diffie-Hellman (DBDH) assumption, and demonstrate that our CAM can 

indeed achieve our design goal. 

B. Efficiency 

     To assess our CAM, we conduct a few experiments. We used a laptop with a 2.4 GHz processor with a 4GB of RAM to 

simulate the cloud server and the company, and 1 GHz AMR-based iPhone with 512MB RAM to simulate a client. All the 

timing reported below are averaged over 100 randomized runs. We assume a maximum of k = 1000 nodes in the branching 

program, which can express most complicated decision support systems as used in the MediNet [32] with 31 nodes (Fig. 2). The 

attribute vector has a maximum of n = 50 attributes, which contain much richer information than the MediNet project with four 

attributes. We use the benchmark results from the PBC library [49] for our evaluation. 

 

 
    In the final CAM, all the costly operations for the company is the computation of the ciphertexts delivered to the cloud. All 

the company needs to perform are the first level encryption in the proxy re-encryptions and the rest symmetric key encryptions, 

which basically consist of a hash computation and an XOR operation. The symmetric key encryption is far less computationally 

intensive than the public encryption scheme, and the computational cost of the company is determined by the first level 

encryption. For each node pi, i ∈ [1, k], the company is required to generate at most 2log(Max′)=2(C + C′) first level ciphertexts 

since the two randomized intervals can be represented by 2log(Max′) identities. Assuming C = 32 (which provides high enough 
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precision for the medical measurements), then C′ = 80 is enough to statistically hide the original data [50]. For each node, the 

company is required to perform at most 2(32+80) = 224 first level encryptions, each of which contains one bilinear pairing and 

two exponentiation operations when only CPA security is considered, which takes a modern 64-bit PC roughly 24 ms [49] to 

complete. Therefore, it takes roughly 5.4s for the company to complete an encryption for a branching node. Since our branching 

program has a maximum of k = 1000 nodes, it takes less than two hours to generate the ciphertexts for the entire branching 

program. Fig. 7 shows the comparison between the computation of the company in the two improved CAM designs. The 

company’s computation is linearly dependent on the number of clients while the cost in the final CAM is constant close to zero 

since all the company needs to accomplish is the initial encryption. The computation overhead of the company is reduced due to 

the usage of key private proxy re-encryption scheme. 

 
     TA is required to generate rekeys for the identity representation sets for different users. Each run of ReKey(id1, id2, msk) 

algorithm costs TA three exponentiation operations. To generate key sets for different users, TA needs to perform at most 

2log(Max′)=2(C+C′)=224 rekey generations for each node. TA is required to compute 2 ∗ 1000(C + C′) ∗ 3=2000 ∗ 336 

modular exponentiations for each client, which takes roughly 201.6s. Fig. 6 shows the computation of rekey generations of TA 

depending on the number of branching nodes. The cloud is required to generate the ciphertexts for clients by running the ReEnc 

algorithm. Each run of ReEnc algorithm costs the cloud exactly two pairing computations. For each client, the cloud needs to 

perform 2∗log(Max′)∗k ∗2 = 4∗(C+C′)∗k pairing computations. Therefore, the cloud needs to perform 4 ∗ (N− 1) ∗ (C +C′) ∗ k 

pairing computations in our CAM. Fig. 9 shows the computation of the cloud in our evaluation. 

 

    The communications between the company and TA are low since the company only needs to deliver the description of a 

pseudo-random function and permutation function, and N ∗ k randomized thresholds to TA. The company needs to deliver two 

field elements (which are roughly 2KB long), i.e., the seeds of the pseudo-random function and permutation function, which are 

sufficient enough for the description of the pseudo-random function assuming they have already agreed on which family of 

pseudo-random functions they are using. Each randomized threshold is 112-bit long, and the company needs to deliver roughly 

112KB to TA for each client in CAM. We note all this workload can be done offline and transparent to a client. However, the 

company needs to generate the ciphertexts for all clients and transfer them to the cloud. The individual ciphertext consists of 

2log(Max′) ∗ k=2(C +C′)k BF-IBE ciphertext, each of which is composed of three group elements. Therefore, the 

communication overhead of the company is composed of 2000 ∗ 112 ∗ 3n group elements in the first improvement while the 

company only needs to deliver 2000 ∗ 112 ∗ 3 group elements (for the first level ciphertext generation at the setup phase) and 

the other 112KB for each client in the final CAM. Fig. 8 shows the comparison between the company communication overhead 

in two improved CAM designs. We observe that the communication overhead is significantly reduced in the final CAM. 
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   Each client needs to complete n homomorphic encryptions and decryptions before he can obtain his private key set. The client 

needs to compute three modular exponentiations for each round of homomorphic encryption and decryption. The client is 

required to run at most 2n log(Max′)=2k(C + C′) instances of Ext(id, msk) algorithm, each of which takes the client two 

exponentiation computations. Assuming the identical parameters as in the above, it will take the client 100*112*2+50*3 

exponentiation computations when n = 50 to get all the private keys, which takes roughly 18 minutes to complete the 

computation. Fig. 10 shows the computation and communication overhead for a client. The individual decryption time is short 

since the individual decision process generally forms a path from the root node to one’s leaf node. Therefore, each client only 

needs to perform roughly 2log(Max′) log k times of Dec(skid,Cid) algorithm. When only CPA security is considered, each 

Dec(skid,Cid) algorithm requires at most 2log(Max′) log k=2*112*10*0.3ms=0.7s to complete. The total computation time for 

the client is no more than 19 minutes in our setting when n = 50 and k = 1000. The client needs to receive k randomized 

thresholds from the cloud and delivers at most 2k log(Max′)=2k(C + C′) group elements to TA. The communication overhead 

contains roughly 225MB data assuming a 1024-bit prime modular is used for the underlying group when k = 1000. It only takes 

several seconds to deliver those information if the current 802.11 cards operate at hundreds of Megabits per second depending 

on signal quality. Fig. 11 shows the individual computation and communication overhead in the final CAM.  
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CONCLUSION AND OPEN PERFORMANCE 

    In this paper, we design a cloud-assisted privacy preserving mobile health monitoring system, called CAM, which can 

effectively protect the privacy of clients and the intellectual property of mHealth service providers. To protect the clients’ 

privacy, we apply the anonymous Boneh-Franklin identity based encryption (IBE) in medical diagnostic branching programs. 

To reduce the decryption complexity due to the use of IBE, we apply recently proposed decryption outsourcing with privacy 

protection to shift clients’ pairing computation to the cloud server. To protect mHealth service providers’ programs, we expand 

the branching program tree by using the random permutation and randomize the decision thresholds used at the decision 

ranching nodes. Finally, to enable resource constrained mall companies to participate in mHealth business; our CAM design 

helps them to shift the computational burden to the cloud by applying newly developed key private proxy re-encryption 

technique. Our CAM has been shown to achieve the design objective.     
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